Effects of Wind Stress Uncertainty on Short-Term Prediction of the Kuroshio Extension State Transition Process

Hui Zhang aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Hui Zhang in
Current site
Google Scholar
PubMed
Close
,
Qiang Wang cKey Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
dCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Qiang Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1485-9740
,
Mu Mu eDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
fInstitute of Atmospheric Sciences, Fudan University, Shanghai, China
aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Mu Mu in
Current site
Google Scholar
PubMed
Close
,
Kun Zhang aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Kun Zhang in
Current site
Google Scholar
PubMed
Close
, and
Yu Geng gState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
hInstitute of Tibetan Plateau Meteorology, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Yu Geng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on the conditional nonlinear optimal perturbation for boundary condition method and Regional Ocean Modeling System (ROMS), this study investigates the influence of wind stress uncertainty on predicting the short-term state transitions of the Kuroshio Extension (KE). The optimal time-dependent wind stress errors that lead to maximum prediction errors are obtained for two KE stable-to-unstable and two reverse transitions, which exhibit local multieddies structures with decreasing magnitude as the end time of prediction approaches. The optimal boundary errors initially induce small oceanic errors through Ekman pumping. Subsequently, these errors grow in magnitude as oceanic internal processes take effect, which exerts significant influences on the short-term prediction of the KE state transition process. Specifically, during stable-to-unstable (unstable-to-stable) transitions, the growing error induces an overestimation (underestimation) of the meridional sea surface height gradient across the KE axis, leading to the predicted KE state being more (less) stable. Furthermore, the dynamics mechanism analysis indicates that barotropic instability is crucial for the error growth in the prediction of both the stable-to-unstable and the reverse transition processes due to the horizontal shear of flow field. But work generated by wind stress error plays a more important role in the prediction of the unstable-to-stable transitions because of the synergistic effect of strong wind stress error and strong oceanic error. Eventually, the sensitive areas have been identified based on the optimal boundary errors. Reducing wind stress errors in sensitive areas can significantly improve prediction skills, offering theoretical guidance for devising observational strategies.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiang Wang, wangq@hhu.edu.cn

Abstract

Based on the conditional nonlinear optimal perturbation for boundary condition method and Regional Ocean Modeling System (ROMS), this study investigates the influence of wind stress uncertainty on predicting the short-term state transitions of the Kuroshio Extension (KE). The optimal time-dependent wind stress errors that lead to maximum prediction errors are obtained for two KE stable-to-unstable and two reverse transitions, which exhibit local multieddies structures with decreasing magnitude as the end time of prediction approaches. The optimal boundary errors initially induce small oceanic errors through Ekman pumping. Subsequently, these errors grow in magnitude as oceanic internal processes take effect, which exerts significant influences on the short-term prediction of the KE state transition process. Specifically, during stable-to-unstable (unstable-to-stable) transitions, the growing error induces an overestimation (underestimation) of the meridional sea surface height gradient across the KE axis, leading to the predicted KE state being more (less) stable. Furthermore, the dynamics mechanism analysis indicates that barotropic instability is crucial for the error growth in the prediction of both the stable-to-unstable and the reverse transition processes due to the horizontal shear of flow field. But work generated by wind stress error plays a more important role in the prediction of the unstable-to-stable transitions because of the synergistic effect of strong wind stress error and strong oceanic error. Eventually, the sensitive areas have been identified based on the optimal boundary errors. Reducing wind stress errors in sensitive areas can significantly improve prediction skills, offering theoretical guidance for devising observational strategies.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiang Wang, wangq@hhu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.2044 MB)
Save
  • Birgin, E. G., J. M. Martínez, and M. Raydan, 2000: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim., 10, 11961211, https://doi.org/10.1137/S1052623497330963.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and Coauthors, 2019: Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Front. Mar. Sci., 6, 443, https://doi.org/10.3389/fmars.2019.00443.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Search Google Scholar
    • Export Citation
  • Ceballos, L. I., E. Di Lorenzo, C. D. Hoyos, N. Schneider, and B. Taguchi, 2009: North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J. Climate, 22, 51635174, https://doi.org/10.1175/2009JCLI2848.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • Dai, G., X. Ma, M. Mu, Z. Han, C. Li, Z. Jiang, and M. Zhu, 2023: Optimal Arctic sea ice concentration perturbation in triggering Ural blocking formation. Atmos. Res., 289, 106775, https://doi.org/10.1016/j.atmosres.2023.106775.

    • Search Google Scholar
    • Export Citation
  • Delman, A. S., J. L. McClean, J. Sprintall, L. D. Talley, E. Yulaeva, and S. R. Jayne, 2015: Effects of eddy vorticity forcing on the mean state of the Kuroshio Extension. J. Phys. Oceanogr., 45, 13561375, https://doi.org/10.1175/JPO-D-13-0259.1.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777, https://doi.org/10.1175/2010JCLI3731.1.

    • Search Google Scholar
    • Export Citation
  • Fujii, Y., H. Tsujino, N. Usui, H. Nakano, and M. Kamachi, 2008: Application of singular vector analysis to the Kuroshio large meander. J. Geophys. Res., 113, C07026, https://doi.org/10.1029/2007JC004476.

    • Search Google Scholar
    • Export Citation
  • Geng, Y., Q. Wang, and M. Mu, 2018: Effect of the decadal Kuroshio Extension variability on the seasonal changes of the mixed-layer salinity anomalies in the Kuroshio-Oyashio confluence region. J. Geophys. Res. Oceans, 123, 88498861, https://doi.org/10.1029/2018JC014139.

    • Search Google Scholar
    • Export Citation
  • Geng, Y., Q. Wang, M. Mu, and K. Zhang, 2020: Predictability and error growth dynamics of the Kuroshio Extension state transition process in an eddy-resolving regional ocean model. Ocean Modell., 153, 101659, https://doi.org/10.1016/j.ocemod.2020.101659.

    • Search Google Scholar
    • Export Citation
  • Gentile, V., S. Pierini, P. de Ruggiero, and L. Pietranera, 2018: Ocean modelling and altimeter data reveal the possible occurrence of intrinsic low-frequency variability of the Kuroshio Extension. Ocean Modell., 131, 2439, https://doi.org/10.1016/j.ocemod.2018.08.006.

    • Search Google Scholar
    • Export Citation
  • Huo, Z., W. Duan, and F. Zhou, 2018: Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations. Adv. Atmos. Sci., 36, 231247, https://doi.org/10.1007/s00376-018-8001-1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kramer, W., H. A. Dijkstra, S. Pierini, and P. J. van Leeuwen, 2012: Measuring the impact of observations on the predictability of the Kuroshio Extension in a shallow-water model. J. Phys. Oceanogr., 42, 317, https://doi.org/10.1175/JPO-D-11-014.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and T. M. Joyce, 2013: Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio–Oyashio Extension variability. J. Climate, 26, 98399859, https://doi.org/10.1175/JCLI-D-12-00647.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281, https://doi.org/10.1175/2010JCLI3343.1.

    • Search Google Scholar
    • Export Citation
  • Li, R., Z. Jing, Z. Chen, and L. Wu, 2017: Response of the Kuroshio Extension path state to near-term global warming in CMIP5 experiments with MIROC4h. J. Geophys. Res. Oceans, 122, 28712883, https://doi.org/10.1002/2016JC012468.

    • Search Google Scholar
    • Export Citation
  • Liang, P., M. Mu, Q. Wang, and L. Yang, 2019: Optimal precursors triggering the Kuroshio intrusion into the South China Sea obtained by the conditional nonlinear optimal perturbation approach. J. Geophys. Res. Oceans, 124, 39413962, https://doi.org/10.1029/2018JC014545.

    • Search Google Scholar
    • Export Citation
  • Liu, X., M. Mu, and Q. Wang, 2018: The nonlinear optimal triggering perturbation of the Kuroshio large meander and its evolution in a regional ocean model. J. Phys. Oceanogr., 48, 17711786, https://doi.org/10.1175/JPO-D-17-0246.1.

    • Search Google Scholar
    • Export Citation
  • Liu, X., Q. Wang, and H. Zhang, 2022: Optimal precursor triggering Kuroshio large meander decay obtained in a regional ocean model. J. Geophys. Res. Oceans, 127, e2021JC018397, https://doi.org/10.1029/2021JC018397.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1975: Climatic predictability. The physical basis of climate and climate modelling, GARP Publ. 16, 132–136.

  • Ma, J., H. Xu, C. Dong, P. Lin, and Y. Liu, 2015: Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos., 120, 63136330, https://doi.org/10.1002/2014JD022930.

    • Search Google Scholar
    • Export Citation
  • Ma, X., M. Mu, G. Dai, Z. Han, C. Li, and Z. Jiang, 2022: Influence of Arctic sea ice concentration on extended‐range prediction of strong and long‐lasting Ural blocking events in winter. J. Geophys. Res. Atmos., 127, e2021JD036282, https://doi.org/10.1029/2021JD036282.

    • Search Google Scholar
    • Export Citation
  • Masunaga, R., H. Nakamura, T. Miyasaka, K. Nishii, and B. Qiu, 2016: Interannual modulations of oceanic imprints on the wintertime atmospheric boundary layer under the changing dynamical regimes of the Kuroshio Extension. J. Climate, 29, 32733296, https://doi.org/10.1175/JCLI-D-15-0545.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., F. Chai, S. Chiba, J. R. Moisan, and D. J. Neilson, 2004: Decadal-scale climate and ecosystem interactions in the North Pacific Ocean. J. Oceanogr., 60, 163188, https://doi.org/10.1023/B:JOCE.0000038325.36306.95.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., H. G. Arango, E. Di Lorenzo, B. D. Cornuelle, A. J. Miller, and D. J. Neilson, 2004: A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Modell., 7, 227258, https://doi.org/10.1016/j.ocemod.2003.11.001.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., H. G. Arango, E. Di Lorenzo, A. J. Miller, and B. D. Cornuelle, 2009: An adjoint sensitivity analysis of the Southern California Current circulation and ecosystem. J. Phys. Oceanogr., 39, 702720, https://doi.org/10.1175/2008JPO3740.1.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes Geophys., 10, 493501, https://doi.org/10.5194/npg-10-493-2003.

    • Search Google Scholar
    • Export Citation
  • Mu, M., W. S. Duan, Q. Wang, and R. Zhang, 2010: An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Processes Geophys., 17, 211220, https://doi.org/10.5194/npg-17-211-2010.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–346, https://doi.org/10.1029/147GM18.

  • Nakano, H., and I. Ishikawa, 2010: Meridional shift of the Kuroshio Extension induced by response of recirculation gyre to decadal wind variations. Deep-Sea Res. II, 57, 11111126, https://doi.org/10.1016/j.dsr2.2009.12.002.

    • Search Google Scholar
    • Export Citation
  • Nishikawa, H., I. Yasuda, and S. Itoh, 2011: Impact of winter-to-spring environmental variability along the Kuroshio jet on the recruitment of Japanese sardine (Sardinops melanostictus). Fish. Oceanogr., 20, 570582, https://doi.org/10.1111/j.1365-2419.2011.00603.x.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S.-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16, 14041413, https://doi.org/10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Sasaki, B. Taguchi, and H. Nakamura, 2012: Potential predictability of interannual variability in the Kuroshio Extension jet speed in an eddy-resolving OGCM. J. Climate, 25, 36453652, https://doi.org/10.1175/JCLI-D-11-00641.1.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., Y. Sasai, H. Sasaki, B. Taguchi, and H. Nakamura, 2016: How potentially predictable are midlatitude ocean currents? Sci. Rep., 6, 20153, https://doi.org/10.1038/srep20153.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Sasaki, B. Taguchi, and N. Schneider, 2020: Atmospheric-driven and intrinsic interannual-to-decadal variability in the Kuroshio Extension jet and eddy activities. Front. Mar. Sci., 7, 547442, https://doi.org/10.3389/fmars.2020.547442.

    • Search Google Scholar
    • Export Citation
  • Oka, E., B. Qiu, S. Kouketsu, K. Uehara, and T. Suga, 2012: Decadal seesaw of the central and subtropical mode water formation associated with the Kuroshio extension variability. J. Oceanogr., 68, 355360, https://doi.org/10.1007/s10872-011-0098-0.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pierini, S., 2006: A Kuroshio Extension system model study: Decadal chaotic self-sustained oscillations. J. Phys. Oceanogr., 36, 16051625, https://doi.org/10.1175/JPO2931.1.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., 2014: Kuroshio Extension bimodality and the North Pacific Oscillation: A case of intrinsic variability paced by external forcing. J. Climate, 27, 448454, https://doi.org/10.1175/JCLI-D-13-00306.1.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., H. A. Dijkstra, and A. Riccio, 2009: A nonlinear theory of the Kuroshio Extension bimodality. J. Phys. Oceanogr., 39, 22122229, https://doi.org/10.1175/2009JPO4181.1.

    • Search Google Scholar
    • Export Citation
  • Pierini, S., H. A. Dijkstra, and M. Mu, 2014: Intrinsic low-frequency variability and predictability of the Kuroshio Current and of its extension. Adv. Oceanogr. Limnol., 5, 79122, https://doi.org/10.4081/aiol.2014.5352.

    • Search Google Scholar
    • Export Citation
  • Putrasahan, D. A., A. J. Miller, and H. Seo, 2013: Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 6078, https://doi.org/10.1016/j.dynatmoce.2013.04.001.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, https://doi.org/10.1175/JPO2807.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 17511764, https://doi.org/10.1175/JCLI-D-13-00318.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and S. Masson, 2017: Satellite observations of imprint of oceanic current on wind stress by air-sea coupling. Sci. Rep., 7, 17747, https://doi.org/10.1038/s41598-017-17939-1.

    • Search Google Scholar
    • Export Citation
  • Révelard, A., C. Frankignoul, N. Sennéchael, Y.-O. Kwon, and B. Qiu, 2016: Influence of the decadal variability of the Kuroshio Extension on the atmospheric circulation in the cold season. J. Climate, 29, 21232144, https://doi.org/10.1175/JCLI-D-15-0511.1.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., H. Hasumi, M. Ishii, S. Emori, T. Suzuki, T. Nishimura, and A. Sumi, 2005: Responses of the Kuroshio and the Kuroshio Extension to global warming in a high-resolution climate model. Geophys. Res. Lett., 32, L14617, https://doi.org/10.1029/2005GL023384.

    • Search Google Scholar
    • Export Citation
  • Sato, N., M. Nonaka, Y. Sasai, H. Sasaki, Y. Tanimoto, and R. Shirooka, 2016: Contribution of sea-surface wind curl to the maintenance of the SST gradient along the upstream Kuroshio Extension in early summer. J. Oceanogr., 72, 697705, https://doi.org/10.1007/s10872-016-0363-3.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. M. Griffies, 1999: A conceptual framework for predictability studies. J. Climate, 12, 31333155, https://doi.org/10.1175/1520-0442(1999)012<3133:ACFFPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14, 42494265, https://doi.org/10.1175/1520-0442(2001)014<4249:WDSITL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shan, X., Z. Jing, B. Sun, and L. Wu, 2020: Impacts of ocean current–atmosphere interactions on mesoscale eddy energetics in the Kuroshio Extension region. Geosci. Lett., 7, 3, https://doi.org/10.1186/s40562-020-00152-w.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and D. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115, 228244, https://doi.org/10.1006/jcph.1994.1189.

    • Search Google Scholar
    • Export Citation
  • Sun, G., and M. Mu, 2022: Role of hydrological parameters in the uncertainty in modeled soil organic carbon using a coupled water-carbon cycle model. Ecol. Complexity, 50, 100986, https://doi.org/10.1016/j.ecocom.2022.100986.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 23572377, https://doi.org/10.1175/JCLI4142.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., B. Qiu, M. Nonaka, H. Sasaki, S.-P. Xie, and N. Schneider, 2010: Decadal variability of the Kuroshio Extension: Mesoscale eddies and recirculations. Ocean Dyn., 60, 673691, https://doi.org/10.1007/s10236-010-0295-1.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, S.-P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development on clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 42414260, https://doi.org/10.1175/2009JCLI2763.1.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., Y. Kawai, M. F. Cronin, T. Hihara, and M. Kubota, 2015: Validation of AMSR2 sea surface wind and temperature over the Kuroshio Extension region. SOLA, 11, 4347, https://doi.org/10.2151/sola.2015-010.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., W. G. Large, and J. G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20, 17421760, https://doi.org/10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., N. Usui, and H. Nakano, 2006: Dynamics of Kuroshio path variations in a high-resolution general circulation model. J. Geophys. Res., 111, C11001, https://doi.org/10.1029/2005JC003118.

    • Search Google Scholar
    • Export Citation
  • Veneziani, M., C. A. Edwards, and A. M. Moore, 2009: A central California coastal ocean modeling study: 2. Adjoint sensitivities to local and remote forcing mechanisms. J. Geophys. Res., 114, C04020, https://doi.org/10.1029/2008JC004775.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. A. Kelly, and L. A. Thompson, 2002: Heat budget in the Kuroshio Extension region: 1993–99. J. Phys. Oceanogr., 32, 34363454, https://doi.org/10.1175/1520-0485(2002)032<3436:HBITKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and M. Mu, 2015: A new application of conditional nonlinear optimal perturbation approach to boundary condition uncertainty. J. Geophys. Res. Oceans, 120, 79797996, https://doi.org/10.1002/2015JC011095.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and S. Pierini, 2020: On the role of the Kuroshio Extension bimodality in modulating the surface eddy kinetic energy seasonal variability. Geophys. Res. Lett., 47, e2019GL086308, https://doi.org/10.1029/2019GL086308.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., M. Mu, and H. A. Dijkstra, 2012: Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander. Adv. Atmos. Sci., 29, 118134, https://doi.org/10.1007/s00376-011-0199-0.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., Y. Tang, S. Pierini, and M. Mu, 2017: Effects of singular-vector-type initial errors on the short-range prediction of Kuroshio Extension transition processes. J. Climate, 30, 59615983, https://doi.org/10.1175/JCLI-D-16-0305.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., M. Mu, and S. Pierini, 2020: The fastest growing initial error in prediction of the Kuroshio Extension state transition processes and its growth. Climate Dyn., 54, 19531971, https://doi.org/10.1007/s00382-019-05097-1.

    • Search Google Scholar
    • Export Citation
  • Wills, S. M., and D. W. J. Thompson, 2018: On the observed relationships between wintertime variability in Kuroshio–Oyashio extension sea surface temperatures and the atmospheric circulation over the North Pacific. J. Climate, 31, 46694681, https://doi.org/10.1175/JCLI-D-17-0343.1.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., R. J. Slutz, R. L. Jenne, and P. M. Steurer, 1987: A Comprehensive Ocean-Atmosphere Data Set. Bull. Amer. Meteor. Soc., 68, 12391250, https://doi.org/10.1175/1520-0477(1987)068<1239:ACOADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, https://doi.org/10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, H., B. Qiu, P. Chang, L. Wu, S. Wang, Z. Chen, and Y. Yang, 2018: Decadal variability of eddy characteristics and energetics in the Kuroshio Extension: Unstable versus stable states. J. Geophys. Res. Oceans, 123, 66536669, https://doi.org/10.1029/2018JC014081.

    • Search Google Scholar
    • Export Citation
  • Yang, H., P. Chang, B. Qiu, Q. Zhang, L. Wu, Z. Chen, and H. Wang, 2019: Mesoscale air–sea interaction and its role in eddy energy dissipation in the Kuroshio Extension. J. Climate, 32, 86598676, https://doi.org/10.1175/JCLI-D-19-0155.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. S. Liang, 2018: On the seasonal eddy variability in the Kuroshio Extension. J. Phys. Oceanogr., 48, 16751689, https://doi.org/10.1175/JPO-D-18-0058.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., X. S. Liang, B. Qiu, and S. Chen, 2017: On the decadal variability of the eddy kinetic energy in the Kuroshio Extension. J. Phys. Oceanogr., 47, 11691187, https://doi.org/10.1175/JPO-D-16-0201.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., X. Fang, and M. Mu, 2020: The optimal precursor of El Niño in the GFDL CM2p1 model. J. Geophys. Res. Oceans, 125, e2019JC015797, https://doi.org/10.1029/2019JC015797.

    • Search Google Scholar
    • Export Citation
  • Yu, P., L. Zhang, and Q. Zhong, 2019: Contrasting relationship between the Kuroshio Extension and the East Asian summer monsoon before and after the late 1980s. Climate Dyn., 52, 929950, https://doi.org/10.1007/s00382-018-4173-8.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., M. Mu, and W. Duan, 2012: Does model parameter error cause a significant “spring predictability barrier” for El Niño events in the Zebiak–Cane model? J. Climate, 25, 12631277, https://doi.org/10.1175/2011JCLI4022.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., Q. Wang, M. Mu, and X. Liu, 2022: Local energetics mechanism for the short-term shift between Kuroshio Extension bimodality. J. Geophys. Res. Oceans, 127, e2022JC018794, https://doi.org/10.1029/2022JC018794.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., Q. Wang, M. Mu, and P. Liang, 2016: Effects of optimal initial errors on predicting the seasonal reduction of the upstream Kuroshio transport. Deep-Sea Res. I, 116, 220235, https://doi.org/10.1016/j.dsr.2016.08.008.

    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., J. L. Wilkin, J. C. Levin, and H. G. Arango, 2009: An adjoint sensitivity study of buoyancy- and wind-driven circulation on the New Jersey inner shelf. J. Phys. Oceanogr., 39, 16521668, https://doi.org/10.1175/2009JPO4050.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, F., and M. Mu, 2012: The time and regime dependencies of sensitive areas for tropical cyclone prediction using the CNOP method. Adv. Atmos. Sci., 29, 705716, https://doi.org/10.1007/s00376-012-1174-0.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., Q. Wang, M. Mu, and K. Zhang, 2021: Optimal precursors triggering sudden shifts in the Antarctic Circumpolar Current transport through Drake Passage. J. Geophys. Res. Oceans, 126, e2021JC017899, https://doi.org/10.1029/2021JC017899.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 331 331 19
Full Text Views 184 184 8
PDF Downloads 144 144 8