Vertical Exchange Induced by Mixed Layer Instabilities

Yangcheng Luo aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
bLMD/IPSL, Sorbonne Université, ENS, PSL, École Polytechnique, Institut Polytechnique de Paris, CNRS, Paris, France

Search for other papers by Yangcheng Luo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0983-3650
and
Jörn Callies aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Jörn Callies in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Submesoscale turbulence in the upper ocean consists of fronts, filaments, and vortices that have horizontal scales on the order of 100 m to 10 km. High-resolution numerical simulations have suggested that submesoscale turbulence is associated with strong vertical motion that could substantially enhance the vertical exchange between the thermocline and mixed layer, which may have an impact on marine ecosystems and climate. Theoretical, numerical, and observational work indicates that submesoscale turbulence is energized primarily by baroclinic instability in the mixed layer, which is most vigorous in winter. This study demonstrates how such mixed layer baroclinic instabilities induce vertical exchange by drawing filaments of thermocline water into the mixed layer. A scaling law is proposed for the dependence of the exchange on environmental parameters. Linear stability analysis and nonlinear simulations indicate that the exchange, quantified by how much thermocline water is entrained into the mixed layer, is proportional to the mixed layer depth, is inversely proportional to the Richardson number of the thermocline, and increases with increasing Richardson number of the mixed layer. The results imply that the tracer exchange between the thermocline and mixed layer is more efficient when the mixed layer is thicker, when the mixed layer stratification is stronger, when the lateral buoyancy gradient is stronger, and when the thermocline stratification is weaker. The scaling suggests vigorous exchange between the permanent thermocline and deep mixed layers in winter, especially in mode water formation regions.

Significance Statement

This study examines how instabilities in the surface layer of the ocean bring interior water up from below. This interior–surface exchange can be important for dissolved gases such as carbon dioxide and oxygen as well as nutrients fueling biological growth in the surface ocean. A scaling law is proposed for the dependence of the exchange on environmental parameters. The results of this study imply that the exchange is particularly strong if the well-mixed surface layer is thick, lateral density gradients are strong (such as at fronts), and the stratification below the surface layer is weak. These theoretical findings can be implemented in boundary layer parameterization schemes in global ocean models and improve our understanding of the marine ecosystem and how the ocean mediates climate change.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yangcheng Luo, yangcheng.luo@lmd.ipsl.fr

Abstract

Submesoscale turbulence in the upper ocean consists of fronts, filaments, and vortices that have horizontal scales on the order of 100 m to 10 km. High-resolution numerical simulations have suggested that submesoscale turbulence is associated with strong vertical motion that could substantially enhance the vertical exchange between the thermocline and mixed layer, which may have an impact on marine ecosystems and climate. Theoretical, numerical, and observational work indicates that submesoscale turbulence is energized primarily by baroclinic instability in the mixed layer, which is most vigorous in winter. This study demonstrates how such mixed layer baroclinic instabilities induce vertical exchange by drawing filaments of thermocline water into the mixed layer. A scaling law is proposed for the dependence of the exchange on environmental parameters. Linear stability analysis and nonlinear simulations indicate that the exchange, quantified by how much thermocline water is entrained into the mixed layer, is proportional to the mixed layer depth, is inversely proportional to the Richardson number of the thermocline, and increases with increasing Richardson number of the mixed layer. The results imply that the tracer exchange between the thermocline and mixed layer is more efficient when the mixed layer is thicker, when the mixed layer stratification is stronger, when the lateral buoyancy gradient is stronger, and when the thermocline stratification is weaker. The scaling suggests vigorous exchange between the permanent thermocline and deep mixed layers in winter, especially in mode water formation regions.

Significance Statement

This study examines how instabilities in the surface layer of the ocean bring interior water up from below. This interior–surface exchange can be important for dissolved gases such as carbon dioxide and oxygen as well as nutrients fueling biological growth in the surface ocean. A scaling law is proposed for the dependence of the exchange on environmental parameters. The results of this study imply that the exchange is particularly strong if the well-mixed surface layer is thick, lateral density gradients are strong (such as at fronts), and the stratification below the surface layer is weak. These theoretical findings can be implemented in boundary layer parameterization schemes in global ocean models and improve our understanding of the marine ecosystem and how the ocean mediates climate change.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yangcheng Luo, yangcheng.luo@lmd.ipsl.fr
Save
  • Ascani, F., K. J. Richards, E. Firing, S. Grant, K. S. Johnson, Y. Jia, R. Lukas, and D. M. Karl, 2013: Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep-Sea Res. II, 93, 119134, https://doi.org/10.1016/j.dsr2.2013.01.034.

    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, J. R. Taylor, and L. N. Thomas, 2017: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Modell., 109, 7295, https://doi.org/10.1016/j.ocemod.2016.12.003.

    • Search Google Scholar
    • Export Citation
  • Balwada, D., K. S. Smith, and R. Abernathey, 2018: Submesoscale vertical velocities enhance tracer subduction in an idealized Antarctic circumpolar current. Geophys. Res. Lett., 45, 97909802, https://doi.org/10.1029/2018GL079244.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 2001: Chebyshev and Fourier Spectral Methods. 2nd ed. Dover Publications, 665 pp.

  • Burns, K. J., G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown, 2020: Dedalus: A flexible framework for numerical simulations with spectral methods. Phys. Rev. Res., 2, 023068, https://doi.org/10.1103/PhysRevResearch.2.023068.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018a: Baroclinic instability in the presence of convection. J. Phys. Oceanogr., 48, 4560, https://doi.org/10.1175/JPO-D-17-0028.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018b: Note on the rate of restratification in the baroclinic spindown of fronts. J. Phys. Oceanogr., 48, 15431553, https://doi.org/10.1175/JPO-D-17-0175.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Barkan, and A. Naveira Garabato, 2020: Time scales of submesoscale flow inferred from a mooring array. J. Phys. Oceanogr., 50, 10651086, https://doi.org/10.1175/JPO-D-19-0254.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California current system. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Crowe, M. N., and J. R. Taylor, 2019: Baroclinic instability with a simple model for vertical mixing. J. Phys. Oceanogr., 49, 32733300, https://doi.org/10.1175/JPO-D-18-0270.1.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, C06013, https://doi.org/10.1029/2006JC004051.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Fox-Kemper, B., and R. Ferrari, 2008: Parameterization of mixed layer eddies. Part II: Prognosis and impact. J. Phys. Oceanogr., 38, 11661179, https://doi.org/10.1175/2007JPO3788.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Freilich, M., and A. Mahadevan, 2021: Coherent pathways for subduction from the surface mixed layer at ocean fronts. J. Geophys. Res. Oceans, 126, e2020JC017042, https://doi.org/10.1029/2020JC017042.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., N. Nakamura, and I. M. Held, 1992: Nonlinear equilibration of two-dimensional Eady waves: A new perspective. J. Atmos. Sci., 49, 19841996, https://doi.org/10.1175/1520-0469(1992)049<1984:NEOTDE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, https://doi.org/10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, and A.-M. Tréguier, 2001: Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535565, https://doi.org/10.1357/002224001762842181.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., R. Ferrari, P. J. S. Franks, A. P. Martin, and P. Rivière, 2012a: Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39, L14602, https://doi.org/10.1029/2012GL052756.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., D. Iovino, L. Resplandy, P. Klein, G. Madec, A.-M. Tréguier, S. Masson, and K. Takahashi, 2012b: Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects. Ocean Modell., 4344, 7793, https://doi.org/10.1016/j.ocemod.2011.12.003.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2006: Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? Ocean Modell., 14, 222240, https://doi.org/10.1016/j.ocemod.2006.05.005.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2014: Eddy effects on biogeochemistry. Nature, 506, 168169, https://doi.org/10.1038/nature13048.

  • Mahadevan, A., 2016: The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci., 8, 161184, https://doi.org/10.1146/annurev-marine-010814-015912.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and D. Archer, 2000: Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. J. Geophys. Res., 105, 12091225, https://doi.org/10.1029/1999JC900216.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., A. Tandon, and R. Ferrari, 2010: Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res., 115, C03017, https://doi.org/10.1029/2008JC005203.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and I. M. Held, 1989: Nonlinear equilibration of two-dimensional Eady waves. J. Atmos. Sci., 46, 30553064, https://doi.org/10.1175/1520-0469(1989)046<3055:NEOTDE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Omand, M. M., E. A. D’Asaro, C. M. Lee, M. J. Perry, N. Briggs, I. Cetini, and A. Mahadevan, 2015: Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science, 348, 222225, https://doi.org/10.1126/science.1260062.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., T. Nakano, S. Chen, and P. Klein, 2017: Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nat. Commun., 8, 14055, https://doi.org/10.1038/ncomms14055.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004, https://doi.org/10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soares, S. M., S. T. Gille, T. K. Chereskin, E. Firing, J. Hummon, and C. B. Rocha, 2022: Transition from balanced to unbalanced motion in the eastern tropical Pacific. J. Phys. Oceanogr., 52, 17751795, https://doi.org/10.1175/JPO-D-21-0139.1.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1970: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27, 721726, https://doi.org/10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1971: Baroclinic stability under non-hydrostatic conditions. J. Fluid Mech., 45, 659671, https://doi.org/10.1017/S0022112071000260.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., S. Hess, R. Hadlock, and P. Ray, 1969: Preliminary results of experiments with symmetric baroclinic instabilities. J. Atmos. Sci., 26, 991996, https://doi.org/10.1175/1520-0469(1969)026<0991:PROEWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and A. F. Thompson, 2023: Submesoscale dynamics in the upper ocean. Annu. Rev. Fluid Mech., 55, 103127, https://doi.org/10.1146/annurev-fluid-031422-095147.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38, https://doi.org/10.1029/177GM04.

  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric Instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 964 pp.

  • Van Roekel, L., and Coauthors, 2018: The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to LES. J. Adv. Model. Earth Syst., 10, 26472685, https://doi.org/10.1029/2018MS001336.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 1994: The subinertial mixed layer approximation. J. Phys. Oceanogr., 24, 18121826, https://doi.org/10.1175/1520-0485(1994)024<1812:TSMLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 918 636 34
Full Text Views 488 386 15
PDF Downloads 898 751 24