• Beal, L. M., and H. L. Bryden, 1997: Observations of an Agulhas undercurrent. Deep-Sea Res. I, 44, 17151724, https://doi.org/10.1016/S0967-0637(97)00033-2.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., W. P. M. de Ruijter, A. Biastoch, R. Zahn, and S. W. I. W. Group, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, https://doi.org/10.1038/nature09983.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., S. Elipot, A. Houk, and G. M. Leber, 2015: Capturing the transport variability of a western boundary jet: Results from the Agulhas Current Time-Series Experiment (ACT). J. Phys. Oceanogr., 45, 13021324, https://doi.org/10.1175/JPO-D-14-0119.1.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., C. W. Böning, B. Brügge, and D. Stammer, 1994: On the generation and role of eddy variability in the central North Atlantic Ocean. J. Geophys. Res., 99, 20 38120 391, https://doi.org/10.1029/94JC01654.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., and A. L. Gordon, 1996: Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res., 101, 36753696, https://doi.org/10.1029/95JC02750.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., Y. Wang, M. J. Olascoaga, G. J. Goni, and G. Haller, 2013: Objective detection of oceanic eddies and the Agulhas leakage. J. Phys. Oceanogr., 43, 14261438, https://doi.org/10.1175/JPO-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. J. C. Reason, J. R. E. Lutjeharms, and O. Boebel, 1999: The importance of flow in the Mozambique Channel to the seasonality in greater Agulhas Current system. Geophys. Res. Lett., 26, 33213324, https://doi.org/10.1029/1999GL002349.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., J. R. E. Lutjeharms, C. W. Böning, and M. Scheinert, 2008: Mesoscale perturbations control inter-ocean exchange south of Africa. Geophys. Res. Lett., 35, L20602, https://doi.org/10.1029/2008GL035132.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, F. U. Schwarzkopf, and J. R. E. Lutjeharms, 2009: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature, 462, 495498, https://doi.org/10.1038/nature08519.

    • Search Google Scholar
    • Export Citation
  • Braby, L., B. C. Backeberg, I. Ansorge, M. J. Roberts, M. Krug, and C. J. C. Reason, 2016: Observed eddy dissipation in the Agulhas Current. Geophys. Res. Lett., 43, 81438150, https://doi.org/10.1002/2016GL069480.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., L. M. Beal, and L. M. Duncan, 2005: Structure and transport of the Agulhas Current and its temporal variability. J. Oceanogr., 61, 479492, https://doi.org/10.1007/s10872-005-0057-8.

    • Search Google Scholar
    • Export Citation
  • Casanova-Masjoan, M., J. L. Pelegrí, P. Sangrà, A. Martínez, D. Grisolía-Santos, M. D. Pérez-Hernández, and A. Hernández-Guerra, 2017: Characteristics and evolution of an Agulhas ring. J. Geophys. Res. Oceans, 122, 70497065, https://doi.org/10.1002/2017JC012969.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and D. B. Boudra, 1988: Dynamics of the Agulhas retroflection and ring formation in a numerical model. Part II. Energetics and ring formation. J. Phys. Oceanogr., 18, 304319, https://doi.org/10.1175/1520-0485(1988)018<0304:DOARAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., A. F. Thompson, and G. R. Flierl, 2016: Time-dependent eddy-mean energy diagrams and their application to the ocean. J. Phys. Oceanogr., 46, 28272850, https://doi.org/10.1175/JPO-D-16-0012.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., L. Wu, B. Qiu, S. Sun, and F. Jia, 2014: Seasonal variation of the South Equatorial Current bifurcation off Madagascar. J. Phys. Oceanogr., 44, 618631, https://doi.org/10.1175/JPO-D-13-0147.1.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., A. Biastoch, S. S. Drijfhou, J. R. E. Lutjeharms, R. P. Matano, T. Pichevin, P. J. van Leeuwe, and W. Weijer, 1999a: Indian-Atlantic interocean exchange: Dynamics, estimation and impact. J. Geophys. Res., 104, 20 88520 910, https://doi.org/10.1029/1998JC900099.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., P. J. van Leeuwen, and J. R. E. Lutjeharms, 1999b: Generation and evolution of Natal pulses: Solitary meanders in the Agulhas Current. J. Phys. Oceanogr., 29, 30433055, https://doi.org/10.1175/1520-0485(1999)029<3043:GAEONP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and W. P. M. de Ruijter, 2001: Barotropic instabilities of the Agulhas Current system and their relation to ring formation. J. Mar. Res., 59, 517533, https://doi.org/10.1357/002224001762842172.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., and L. M. Beal, 2018: Observed Agulhas Current sensitivity to interannual and long-term trend atmospheric forcings. J. Climate, 31, 30773098, https://doi.org/10.1175/JCLI-D-17-0597.1.

    • Search Google Scholar
    • Export Citation
  • Feron, R. C. V., W. P. M. de Ruijter, and D. Oskam, 1992: Ring shedding in the Agulhas Current system. J. Geophys. Res., 97, 94679477, https://doi.org/10.1029/92JC00736.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 2009: Pattern and velocity of propagation of the global ocean eddy variability. J. Geophys. Res., 114, C11017, https://doi.org/10.1029/2009JC005349.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499508, https://doi.org/10.1016/0011-7471(74)90010-2.

    • Search Google Scholar
    • Export Citation
  • Goñi, G. J., S. L. Garzoli, A. J. Roubicek, D. B. Olson, and O. B. Brown, 1997: Agulhas ring dynamics from TOPEX/POSEIDON satellite altimeter data. J. Mar. Res., 55, 861883, https://doi.org/10.1357/0022240973224175.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and W. F. Haxby, 1990: Agulhas eddies invade the South Atlantic: Evidence from Geosat altimeter and shipboard conductivity-temperature-depth survey. J. Geophys. Res., 95, 31173125, https://doi.org/10.1029/JC095iC03p03117.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., J. R. E. Lutjeharms, and M. L. Gründlingh, 1987: Stratification and circulation at the Agulhas retroflection. Deep-Sea Res., 34A, 565599, https://doi.org/10.1016/0198-0149(87)90006-9.

    • Search Google Scholar
    • Export Citation
  • Gründlingh, M. L., 1978: Drift of a satellite-tracked buoy in the southern Agulhas Current and Agulhas Return Current. Deep-Sea Res., 25, 12091224, https://doi.org/10.1016/0146-6291(78)90014-0.

    • Search Google Scholar
    • Export Citation
  • Gründlingh, M. L., 1995: Tracking eddies in the southeast Atlantic and southwest Indian Oceans with TOPEX/POSEIDON. J. Geophys. Res., 100, 24 97724 986, https://doi.org/10.1029/95JC01985.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690715, https://doi.org/10.1175/JPO-D-14-0154.1.

    • Search Google Scholar
    • Export Citation
  • Holton, L., J. Deshayes, B. C. Backeberg, B. R. Loveday, J. C. Hermes, and C. J. C. Reason, 2017: Spatio-temporal characteristics of Agulhas leakage: A model inter-comparison study. Climate Dyn., 48, 21072121, https://doi.org/10.1007/s00382-016-3193-5.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, https://doi.org/10.1175/JPO-D-14-0200.1.

    • Search Google Scholar
    • Export Citation
  • Krug, M., and J. Tournadre, 2012: Satellite observations of an annual cycle in the Agulhas Current. Geophys. Res. Lett., 39, L15607, https://doi.org/10.1029/2012GL052335.

    • Search Google Scholar
    • Export Citation
  • Laxenaire, R., S. Speich, B. Blanke, A. Chaigneau, C. Pegliasco, and A. Stegner, 2018: Anticyclonic eddies connecting the western boundaries of Indian and Atlantic Oceans. J. Geophys. Res. Oceans, 123, 76517677, https://doi.org/10.1029/2018JC014270.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2016: Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J. Atmos. Sci., 73, 44394468, https://doi.org/10.1175/JAS-D-16-0131.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2004: A study of the Iceland–Faeroe frontal variability using the multiscale energy and vorticity analysis. J. Phys. Oceanogr., 34, 25712591, https://doi.org/10.1175/JPO2661.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2005: Localized multiscale energy and vorticity analysis: I. Fundamentals. Dyn. Atmos. Oceans, 38, 195230, https://doi.org/10.1016/j.dynatmoce.2004.12.004.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and D. G. M. Anderson, 2007: Multiscale window transform. Multiscale Model. Simul., 6, 437467, https://doi.org/10.1137/06066895X.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2007: Localized multi-scale energy and vorticity analysis: II. Finite-amplitude instability theory and validation. Dyn. Atmos. Oceans, 44, 5176, https://doi.org/10.1016/j.dynatmoce.2007.04.001.

    • Search Google Scholar
    • Export Citation
  • Loveday, B. R., J. V. Durgadoo, C. J. C. Reason, A. Biastoch, and P. Penven, 2014: Decoupling of the Agulhas leakage from the Agulhas Current. J. Phys. Oceanogr., 44, 17761797, https://doi.org/10.1175/JPO-D-13-093.1.

    • Search Google Scholar
    • Export Citation
  • Luecke, C. A., and Coauthors, 2017: The global mesoscale eddy available potential energy field in models and observations. J. Geophys. Res. Oceans, 122, 91269143, https://doi.org/10.1002/2017JC013136.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., 2006: The Agulhas Current. 1st ed. Springer, 329 pp., https://doi.org/10.1007/3-540-37212-1.

  • Lutjeharms, J. R. E., and H. R. Valentine, 1988: Eddies at the subtropical convergence south of Africa. J. Phys. Oceanogr., 18, 761774, https://doi.org/10.1175/1520-0485(1988)018<0761:EATSCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., and R. C. van Ballegooyen, 1988: The retroflection of the Agulhas Current. J. Phys. Oceanogr., 18, 15701583, https://doi.org/10.1175/1520-0485(1988)018<1570:TROTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., R. Catzel, and H. R. Valentine, 1989: Eddies and other border phenomena of the Agulhas Current. Cont. Shelf Res., 9, 597616, https://doi.org/10.1016/0278-4343(89)90032-0.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., O. Boebel, and H. T. Rossby, 2003a: Agulhas cyclones. Deep-Sea Res. II, 50, 1334, https://doi.org/10.1016/S0967-0645(02)00378-8.

    • Search Google Scholar
    • Export Citation
  • Lutjeharms, J. R. E., P. Penven, and C. Roy, 2003b: Modelling the shear edge eddies of the southern Agulhas Current. Cont. Shelf Res., 23, 10991115, https://doi.org/10.1016/S0278-4343(03)00106-7.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • McDonagh, E. L., K. J. Heywood, and M. P. Meredith, 1999: On the structure, paths, and fluxes associated with Agulhas rings. J. Geophys. Res., 104, 21 00721 020, https://doi.org/10.1029/1998JC900131.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., I. Fukumori, and T. Lee, 2005: Using Green’s functions to calibrate an ocean general circulation model. Mon. Wea. Rev., 133, 12241240, https://doi.org/10.1175/MWR2912.1.

    • Search Google Scholar
    • Export Citation
  • Olson, D. B., and R. H. Evans, 1986: Rings of the Agulhas Current. Deep-Sea Res., 33A, 2742, https://doi.org/10.1016/0198-0149(86)90106-8.

    • Search Google Scholar
    • Export Citation
  • Peeters, F. J. C., R. Acheson, G.-J. A. Brummer, W. P. M. de Ruijter, R. R. Schneider, G. M. Ganssen, E. Ufkes, and D. Kroon, 2004: Vigorous exchange between the Indian and Atlantic Oceans at the end of the past five glacial periods. Nature, 430, 661665, https://doi.org/10.1038/nature02785.

    • Search Google Scholar
    • Export Citation
  • Putrasahan, D., B. P. Kirtman, and L. M. Beal, 2016: Modulation of SST interannual variability in the Agulhas leakage region associated with ENSO. J. Climate, 29, 70897102, https://doi.org/10.1175/JCLI-D-15-0172.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, and N. Schneider, 2017: Dynamical links between the decadal variability of the Oyashio and Kuroshio Extensions. J. Climate, 30, 95919605, https://doi.org/10.1175/JCLI-D-17-0397.1.

    • Search Google Scholar
    • Export Citation
  • Raith, F., N. Röber, H. Haak, and G. Scheuermann, 2017: Visual eddy analysis of the Agulhas Current. EnvirVis ‘17: Proc. Workshop on Visualisation in Environmental Sciences, Barcelona, Spain, Eurographics Association, 25–29, https://doi.org/10.2312/envirvis.20171100.

  • Roullet, G., 2020: World Ocean Atlas of Argo inferred statistics. SEANOE, accessed 9 March 2020, https://doi.org/10.17882/72432.

  • Roullet, G., X. Capet, and G. Maze, 2014: Global interior eddy available potential energy diagnosed from Argo floats. Geophys. Res. Lett., 41, 16511656, https://doi.org/10.1002/2013GL059004.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., Jr., 1996: On the eddy field in the Agulhas retroflection, with some global considerations. J. Geophys. Res., 101, 16 25916 271, https://doi.org/10.1029/96JC01143.

    • Search Google Scholar
    • Export Citation
  • Schouten, M. W., W. P. M. de Ruijter, P. J. van Leeuwen, and J. R. E. Lutjeharms, 2000: Translation, decay and splitting of Agulhas rings in the southeastern Atlantic Ocean. J. Geophys. Res., 105, 21 91321 925, https://doi.org/10.1029/1999JC000046.

    • Search Google Scholar
    • Export Citation
  • Schubert, R., F. U. Schwarzkopf, B. Baschek, and A. Biastoch, 2019: Submesoscale impacts on mesoscale Agulhas dynamics. J. Adv. Model. Earth Syst., 11, 27452767, https://doi.org/10.1029/2019MS001724.

    • Search Google Scholar
    • Export Citation
  • Schubert, R., J. Gula, R. J. Greatbatch, B. Baschek, and A. Biastoch, 2020: The submesoscale kinetic energy cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes. J. Phys. Oceanogr., 50, 25732589, https://doi.org/10.1175/JPO-D-19-0311.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, R., J. Gula, and A. Biastoch, 2021: Submesoscale flows impact Agulhas leakage in ocean simulations. Commun. Earth Environ., 2, 197, https://doi.org/10.1038/s43247-021-00271-y.

    • Search Google Scholar
    • Export Citation
  • Sérazin, G., T. Penduff, B. Barnier, J.-M. Molines, B. K. Arbic, M. Müller, and L. Terray, 2018: Inverse cascades of kinetic energy as a source of intrinsic variability: A global OGCM study. J. Phys. Oceanogr., 48, 13851408, https://doi.org/10.1175/JPO-D-17-0136.1.

    • Search Google Scholar
    • Export Citation
  • Souza, J. M. A. C., C. de Boyer Montégut, and P. Y. Le Traon, 2011: Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci., 7, 317334, https://doi.org/10.5194/os-7-317-2011.

    • Search Google Scholar
    • Export Citation
  • Tedesco, P., J. Gula, C. Ménesguen, P. Penven, and M. Krug, 2019: Generation of submesoscale frontal eddies in the Agulhas Current. J. Geophys. Res. Oceans, 124, 76067625, https://doi.org/10.1029/2019JC015229.

    • Search Google Scholar
    • Export Citation
  • Tedesco, P., J. Gula, P. Penven, and C. Ménesguen, 2022: Mesoscale eddy kinetic energy budgets and transfers between vertical modes in the Agulhas Current. J. Phys. Oceanogr., 52, 677704, https://doi.org/10.1175/JPO-D-21-0110.1.

    • Search Google Scholar
    • Export Citation
  • van Ballegooyen, R. C., M. L. Gründlingh, and J. R. E. Lutjeharms, 1994: Eddy fluxes of heat and salt from the southwest Indian Ocean into the southeast Atlantic Ocean: A case study. J. Geophys. Res., 99, 14 05314 070, https://doi.org/10.1029/94JC00383.

    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., V. Zharkov, D. Nof, H. A. Dijkstra, W. P. M. de Ruijter, A. T. van Scheltinga, and F. Wubs, 2013: Agulhas ring formation as a barotropic instability of the retroflection. Geophys. Res. Lett., 40, 54355438, https://doi.org/10.1002/2013GL057751.

    • Search Google Scholar
    • Export Citation
  • Wells, N. C., V. O. Ivchenko, and S. E. Best, 2000: Instabilities in the Agulhas retroflection current system: A comparative model study. J. Geophys. Res., 105, 32333241, https://doi.org/10.1029/1999JC900283.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., P. Heimbach, R. Ponte, and I. Fukumori, 2009: The global general circulation of the ocean estimated by the ECCO-consortium. Oceanography, 22, 88103, https://doi.org/10.5670/oceanog.2009.41.

    • Search Google Scholar
    • Export Citation
  • Yan, X., D. Kang, E. N. Curchitser, and C. Pang, 2019: Energetics of eddy–mean flow interactions along the western boundary currents in the North Pacific. J. Phys. Oceanogr., 49, 789810, https://doi.org/10.1175/JPO-D-18-0201.1.

    • Search Google Scholar
    • Export Citation
  • Yan, X., D. Kang, C. Pang, L. Zhang, and H. Liu, 2022: Energetics analysis of the eddy–Kuroshio interaction east of Taiwan. J. Phys. Oceanogr., 52, 647664, https://doi.org/10.1175/JPO-D-21-0198.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. S. Liang, 2016: The instabilities and multiscale energetics underlying the mean–interannual–eddy interactions in the Kuroshio Extension region. J. Phys. Oceanogr., 46, 14771494, https://doi.org/10.1175/JPO-D-15-0226.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. S. Liang, 2018: On the seasonal eddy variability in the Kuroshio Extension. J. Phys. Oceanogr., 48, 16751689, https://doi.org/10.1175/JPO-D-18-0058.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. S. Liang, 2019a: The intrinsic nonlinear multiscale interactions among the mean flow, low frequency variability and mesoscale eddies in the Kuroshio region. Sci. China Earth Sci., 62, 595608, https://doi.org/10.1007/s11430-018-9289-4.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. S. Liang, 2019b: New perspectives on the generation and maintenance of the Kuroshio large meander. J. Phys. Oceanogr., 49, 20952113, https://doi.org/10.1175/JPO-D-18-0276.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. S. Liang, 2019c: Spatiotemporal variability of the global ocean internal processes inferred from satellite observations. J. Phys. Oceanogr., 49, 21472164, https://doi.org/10.1175/JPO-D-18-0273.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., X. S. Liang, B. Qiu, and S. Chen, 2017: On the decadal variability of the eddy kinetic energy in the Kuroshio Extension. J. Phys. Oceanogr., 47, 11691187, https://doi.org/10.1175/JPO-D-16-0201.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., R. H. Weisberg, Y. Liu, and X. S. Liang, 2020: Instabilities and multiscale interactions underlying the loop current eddy shedding in the Gulf of Mexico. J. Phys. Oceanogr., 50, 12891317, https://doi.org/10.1175/JPO-D-19-0202.1.

    • Search Google Scholar
    • Export Citation
  • Zemskova, V. E., B. L. White, and A. Scotti, 2015: Available potential energy and the general circulation: Partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr., 45, 15101531, https://doi.org/10.1175/JPO-D-14-0043.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., B. Qiu, X. Lin, and F. Wang, 2018: Interannual eddy kinetic energy modulations in the Agulhas Return Current. J. Geophys. Res. Oceans, 123, 64496462, https://doi.org/10.1029/2018JC014333.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 218 218 54
Full Text Views 143 143 19
PDF Downloads 168 168 23

Energetics of Multiscale Interactions in the Agulhas Retroflection Current System

Mengmeng LiaKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
cUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Mengmeng Li in
Current site
Google Scholar
PubMed
Close
,
Chongguang PangaKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bPilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
dCenter for Ocean Mega-Science, Chinese Academy of Science, Qingdao, China

Search for other papers by Chongguang Pang in
Current site
Google Scholar
PubMed
Close
,
Xiaomei YanaKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bPilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
dCenter for Ocean Mega-Science, Chinese Academy of Science, Qingdao, China

Search for other papers by Xiaomei Yan in
Current site
Google Scholar
PubMed
Close
,
Linlin ZhangaKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
bPilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
dCenter for Ocean Mega-Science, Chinese Academy of Science, Qingdao, China

Search for other papers by Linlin Zhang in
Current site
Google Scholar
PubMed
Close
, and
Zhiliang LiueResearch Center for Marine Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
fHebei Key Laboratory of Ocean Dynamics, Resources and Environments, Hebei Normal University of Science and Technology, Qinhuangdao, China

Search for other papers by Zhiliang Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using the recently developed multiscale window transform and multiscale energy and vorticity analysis methods, this study diagnoses the climatological characteristics of the nonlinear mutual interactions among mesoscale eddies, low-frequency (seasonal to interannual) fluctuations, and the decadally modulating mean flow in the Agulhas Retroflection Current System (ARCS). It is found that mesoscale eddies are generated primarily in the retroflection region by mixed barotropic and baroclinic instabilities. The barotropic instability dominates the generation of eddy kinetic energy (EKE) here, contributing power roughly 10 times larger than the baroclinic one. These locally generated eddies are transported away. In the rings drift and meanders regions, the nonlocal transport serves as an important energy source for the eddy field, making a contribution comparable to that of the baroclinic instability for the EKE production. Contrarily, in the stable region, the EKE is generated mainly due to the baroclinic instability. In most of the ARCS area, the kinetic energy (KE) is further transferred inversely from mesoscale eddies to other lower-frequency motions. In particular, in the retroflection, rings drift, and stable regions, the inverse KE cascade plays a leading role in generating seasonal–interannual fluctuations, providing roughly 3–5 times as much power as the forward KE cascade from the mean flow and the advection effect. In the meanders region, however, the forward cascade contributes 4 times more KE to the low-frequency variabilities than the inverse one. All the results provide a model-based benchmark for future studies on physical processes and dynamics at different scales in the ARCS.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaomei Yan, yanxiaomei@qdio.ac.cn

Abstract

Using the recently developed multiscale window transform and multiscale energy and vorticity analysis methods, this study diagnoses the climatological characteristics of the nonlinear mutual interactions among mesoscale eddies, low-frequency (seasonal to interannual) fluctuations, and the decadally modulating mean flow in the Agulhas Retroflection Current System (ARCS). It is found that mesoscale eddies are generated primarily in the retroflection region by mixed barotropic and baroclinic instabilities. The barotropic instability dominates the generation of eddy kinetic energy (EKE) here, contributing power roughly 10 times larger than the baroclinic one. These locally generated eddies are transported away. In the rings drift and meanders regions, the nonlocal transport serves as an important energy source for the eddy field, making a contribution comparable to that of the baroclinic instability for the EKE production. Contrarily, in the stable region, the EKE is generated mainly due to the baroclinic instability. In most of the ARCS area, the kinetic energy (KE) is further transferred inversely from mesoscale eddies to other lower-frequency motions. In particular, in the retroflection, rings drift, and stable regions, the inverse KE cascade plays a leading role in generating seasonal–interannual fluctuations, providing roughly 3–5 times as much power as the forward KE cascade from the mean flow and the advection effect. In the meanders region, however, the forward cascade contributes 4 times more KE to the low-frequency variabilities than the inverse one. All the results provide a model-based benchmark for future studies on physical processes and dynamics at different scales in the ARCS.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaomei Yan, yanxiaomei@qdio.ac.cn
Save