• Allen, J. S., P. A. Newberger, and J. Federiuk, 1995: Upwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing. J. Phys. Oceanogr., 25, 18431866, https://doi.org/10.1175/1520-0485(1995)025<1843:UCOTOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, J. A., and S. J. Lentz, 2002: The inner shelf response to wind-driven upwelling and downwelling. J. Phys. Oceanogr., 32, 21712193, https://doi.org/10.1175/1520-0485(2002)032<2171:TISRTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Castelao, R., R. Chant, S. Glenn, and O. Schofield, 2010: The effects of tides and oscillatory winds on the subtidal inner-shelf cross-shelf circulation. J. Phys. Oceanogr., 40, 775788, https://doi.org/10.1175/2009JPO4273.1.

    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., 1987: Wind-driven motion near inner shelf fronts. J. Geophys. Res., 92, 38493860, https://doi.org/10.1029/JC092iC04p03849.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and S. J. Lentz, 1994: Trapping of a coastal density front by the bottom boundary layer. J. Phys. Oceanogr., 24, 14641479, https://doi.org/10.1175/1520-0485(1994)024<1464:TOACDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chegini, F., Y. Lu, A. Katavouta, and H. Ritchie, 2018: Coastal upwelling off southwest Nova Scotia simulated with a high‐resolution baroclinic ocean model. J. Geophys. Res. Oceans, 123, 23182331, https://doi.org/10.1002/2017JC013431.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., W. P. Gong, H. Y. Cai, Y. Z. Chen, and H. Zhang, 2017: Dispersal of the Pearl River plume over continental shelf in summer. Estuarine Coastal Shelf Sci., 194, 252262, https://doi.org/10.1016/j.ecss.2017.06.025.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. W. Jiang, J. Wang, and W. P. Gong, 2019: Influence of a river plume on coastal upwelling dynamics: Importance of stratification. J. Phys. Oceanogr., 49, 23452363, https://doi.org/10.1175/JPO-D-18-0215.1.

    • Search Google Scholar
    • Export Citation
  • Davies, A. M., and R. A. Flather, 1978: Application of numerical models of the Northwest European Continental Shelf and the North Sea to the computation of the storm surges of November to December 1973. Deutsches Hydrographisches Institut, 72 pp.

  • Estrade, P., P. Marchesiello, A. C. De Verdière, and C. Roy, 2008: Cross-shelf structure of coastal upwelling: A two-dimensional extension of Ekman’s theory and a mechanism for inner shelf upwelling shut down. J. Mar. Res., 66, 589616, https://doi.org/10.1357/002224008787536790.

    • Search Google Scholar
    • Export Citation
  • Fernández-Castro, B., M. Gilcoto, A. C. Naveira-Garabato, M. Villamaña, R. Graña, and B. Mouriño-Carballido, 2018: Modulation of the semidiurnal cycle of turbulent dissipation by wind-driven upwelling in a coastal embayment. J. Geophys. Res. Oceans, 123, 40344054, https://doi.org/10.1002/2017JC013582.

    • Search Google Scholar
    • Export Citation
  • Fong, D. A., and W. R. Geyer, 2001: Response of a river plume during an upwelling favorable wind event. J. Geophys. Res., 106, 10671084, https://doi.org/10.1029/2000JC900134.

    • Search Google Scholar
    • Export Citation
  • Gan, J. P., L. Li, D. X. Wang, and X. G. Guo, 2009a: Interaction of a river plume with coastal upwelling in the northeastern South China Sea. Cont. Shelf Res., 29, 728740, https://doi.org/10.1016/j.csr.2008.12.002.

    • Search Google Scholar
    • Export Citation
  • Gan, J. P., A. Cheung, X. G. Guo, and L. Li, 2009b: Intensified upwelling over a widened shelf in the northeastern South China Sea. J. Geophys. Res., 114, C09019, https://doi.org/10.1029/2007JC004660.

    • Search Google Scholar
    • Export Citation
  • García Berdeal, I., B. M. Hickey, and M. Kawase, 2002: Influence of wind stress and ambient flow on a high discharge river plume. J. Geophys. Res., 107, 3130, https://doi.org/10.1029/2001JC000932.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, https://doi.org/10.1146/annurev.fl.25.010193.001451.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., J. Pan, and H. Lin, 2012: Remote sensing observation and numerical modeling of an upwelling jet in Guangdong coastal water. J. Geophys. Res., 117, C08019, https://doi.org/10.1029/2012JC007922.

    • Search Google Scholar
    • Export Citation
  • Hickey, B., S. Geier, N. Kachel, and A. MacFadyen, 2005: A bi-directional river plume: The Columbia in summer. Cont. Shelf Res., 25, 16311656, https://doi.org/10.1016/j.csr.2005.04.010.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., F. Chai, Z. Wan, X. Zhang, and H. Hong, 2011: Characteristics and mechanisms of the upwelling in the southern Taiwan Strait: A three-dimensional numerical model study. J. Oceanogr., 67, 699708, https://doi.org/10.1007/s10872-011-0080-x.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., 2005: Wind-driven inner-shelf circulation off central Oregon during summer. J. Geophys. Res., 110, C10S03, https://doi.org/10.1029/2004JC002611.

    • Search Google Scholar
    • Export Citation
  • Kourafalou, V. H., L.-Y. Oey, J. D. Wang, and T. N. Lee, 1996: The fate of river discharge on the continental shelf: 1. Modeling the river plume and the inner shelf coastal current. J. Geophys. Res., 101, 34153434, https://doi.org/10.1029/95JC03024.

    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., J. S. Allen, and G. D. Egbert, 2010: Combined effects of wind-driven upwelling and internal tide on the continental shelf. J. Phys. Oceanogr., 40, 737756, https://doi.org/10.1175/2009JPO4183.1.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 1995: Sensitivity of the inner-shelf circulation to the form of the eddy viscosity profile. J. Phys. Oceanogr., 25, 1928, https://doi.org/10.1175/1520-0485(1995)025<0019:SOTISC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 2001: The influence of stratification on the wind-driven cross-shelf circulation over the North Carolina shelf. J. Phys. Oceanogr., 31, 27492760, https://doi.org/10.1175/1520-0485(2001)031<2749:TIOSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 2004: The response of buoyant coastal plumes to upwelling-favorable winds. J. Phys. Oceanogr., 34, 24582469, https://doi.org/10.1175/JPO2647.1.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and J. H. Trowbridge, 1991: The bottom boundary layer over the Northern California Shelf. J. Phys. Oceanogr., 21, 11861201, https://doi.org/10.1175/1520-0485(1991)021<1186:TBBLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and D. C. Chapman, 2004: The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr., 34, 24442457, https://doi.org/10.1175/JPO2644.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y. N., E. N. Curchitser, J. Wang, and S. Q. Peng, 2020: Tidal effects on the surface water cooling northeast of Hainan Island, South China Sea. J. Geophys. Res. Oceans, 125, e2019JC016016, https://doi.org/10.1029/2019JC016016.

    • Search Google Scholar
    • Export Citation
  • , X., F. Qiao, C. Xia, J. Zhu, and Y. Yuan, 2006: Upwelling off Yangtze River estuary in summer. J. Geophys. Res., 111, C11S08, https://doi.org/10.1029/2005JC003250.

    • Search Google Scholar
    • Export Citation
  • Mao, Q. W., P. Shi, K. D. Yin, J. P. Gan, and Y. Q. Qi, 2004: Tides and tidal currents in the Pearl River estuary. Cont. Shelf Res., 24, 17971808, https://doi.org/10.1016/j.csr.2004.06.008.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3 (1–2), 120, https://doi.org/10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure-model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • O’Donnell, J., 1990: The formation and fate of a river plume: A numerical model. J. Phys. Oceanogr., 20, 551569, https://doi.org/10.1175/1520-0485(1990)020<0551:TFAFOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ou, S., 2007: Horizontal characteristics of buoyant plume off the Pearl River estuary during summer. J. Coastal Res., 50 (special issue), 652657.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, K. E. I., and K. Akitomo, 2009: The tidally induced bottom boundary layer in the rotating frame: Development of the turbulent mixed layer under stratification. J. Fluid Mech., 619, 235259, https://doi.org/10.1017/S0022112008004503.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., W. R. Geyer, and J. H. Trowbridge, 2011: The influence of stratification and nonlocal turbulent production on estuarine turbulence: An assessment of turbulence closure with field observations. J. Phys. Oceanogr., 41, 166185, https://doi.org/10.1175/2010JPO4470.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and S. Sarkar, 2008: Stratification effects in a bottom Ekman layer. J. Phys. Oceanogr., 38, 25352555, https://doi.org/10.1175/2008JPO3942.1.

    • Search Google Scholar
    • Export Citation
  • Tee, K. T., P. C. Smith, and D. Lefaivre, 1993: Topographic upwelling off southwest Nova Scotia. J. Phys. Oceanogr., 23, 17031726, https://doi.org/10.1175/1520-0485(1993)023<1703:TUOSNS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., and S. J. Lentz, 1991: Asymmetric behavior of an oceanic boundary layer above a sloping bottom. J. Phys. Oceanogr., 21, 11711185, https://doi.org/10.1175/1520-0485(1991)021<1171:ABOAOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, D., W. Zhuang, S.-P. Xie, J. Hu, Y. Shu, and R. Wu, 2012: Coastal upwelling in summer 2000 in the northeastern South China Sea. J. Geophys. Res., 117, C04009, https://doi.org/10.1029/2011JC007465.

    • Search Google Scholar
    • Export Citation
  • Wang, K., and K. Yin, 2021: Barrier effect of the Pearl River estuarine plume on wind‐induced coastal upwelling of nutrients. J. Geophys. Res. Biogeosci., 126, e2020JG006067, https://doi.org/10.1029/2020JG006067.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Yang, J. Wang, and X. Bai, 2015: A modeling study of the effects of river runoff, tides, and surface wind-wave mixing on the eastern and western Hainan upwelling systems of the South China Sea, China. Ocean Dyn., 65, 11431164, https://doi.org/10.1007/s10236-015-0857-3.

    • Search Google Scholar
    • Export Citation
  • Werner, S. R., 2003: Observations and modeling of the tidal bottom boundary layer on the southern flank of Georges Bank. J. Geophys. Res., 108, 8005, https://doi.org/10.1029/2001JC001271.

    • Search Google Scholar
    • Export Citation
  • Whitney, M. M., and R. W. Garvine, 2005: Wind influence on a coastal buoyant outflow. J. Geophys. Res., 110, C03014, https://doi.org/10.1029/2003JC002261.

    • Search Google Scholar
    • Export Citation
  • Xu, C., Y. Xu, J. Hu, S. Li, and B. Wang, 2019: A numerical analysis of the summertime Pearl River plume from 1999 to 2010: Dispersal patterns and intraseasonal variability. J. Mar. Syst., 192, 1527, https://doi.org/10.1016/j.jmarsys.2018.12.010.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and G. Voulgaris, 2019: Response of a coastal plume formed by tidally modulated estuarine outflow to light upwelling-favorable wind. J. Phys. Oceanogr., 49, 691703, https://doi.org/10.1175/JPO-D-18-0126.1.

    • Search Google Scholar
    • Export Citation
  • Zu, T. T., and J. P. Gan, 2015: A numerical study of coupled estuary–shelf circulation around the Pearl River Estuary during summer: Responses to variable winds, tides and river discharge. Deep-Sea Res. II, 117, 5364, https://doi.org/10.1016/j.dsr2.2013.12.010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 593 593 45
Full Text Views 172 172 14
PDF Downloads 204 204 14

Responses of Coastal Upwelling to Tidally Induced Bottom Friction Dynamics and Plume-Modulated Geostrophy: A Process-Oriented Modeling Study

Weicong ChengaDepartment of Ocean Science and Mathematics, Hong Kong University of Science and Technology, Hong Kong, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Weicong Cheng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1223-7983
and
Jianping GanaDepartment of Ocean Science and Mathematics, Hong Kong University of Science and Technology, Hong Kong, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Jianping Gan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9827-7929
Restricted access

Abstract

We used a high-resolution cross-shelf two-dimensional numerical model to investigate the response of coastal wind-driven upwelling circulation to barotropic tidal forcing and lateral buoyant discharge over a broad continental shelf. We found that the tidally amplified asymmetric friction effect arising from the interaction between tidal and subtidal currents modulated the upwelling structure across the shelf. The interaction weakened the water outcropping (upwelling) in the inner shelf due to tidally amplified mixing, but enhanced cross-shore velocity offshore due to tidally induced asymmetric friction effect and nonlinear advection. The enhanced mixing changed the density in the bottom boundary layer and subsequently in the upwelling front, which eventually weakened the geostrophic alongshore flow. The mass and stratification inputs of the lateral buoyant discharge weakened or even reversed geostrophic dynamics for alongshore and upslope transports. The reversed cross-shore density and elevation gradient induced by the buoyant influx weakened the alongshore current and the associated bottom friction effect. The upslope cross-shore transport was reduced due to weakened alongshore flow and the associated bottom Ekman transport. The mass of buoyant influx compensated for the wind-driven offshore transport in the upper layer. The upwelling could be reversed to downwelling when the transport of lateral influx exceeded the wind-driven offshore transport. The responses of upwelling circulation to tidal and lateral buoyancy forcing highlighted in this process-oriented study are fundamental for interpreting more complex wind-driven shelf circulation.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Gan, magan@ust.hk

Abstract

We used a high-resolution cross-shelf two-dimensional numerical model to investigate the response of coastal wind-driven upwelling circulation to barotropic tidal forcing and lateral buoyant discharge over a broad continental shelf. We found that the tidally amplified asymmetric friction effect arising from the interaction between tidal and subtidal currents modulated the upwelling structure across the shelf. The interaction weakened the water outcropping (upwelling) in the inner shelf due to tidally amplified mixing, but enhanced cross-shore velocity offshore due to tidally induced asymmetric friction effect and nonlinear advection. The enhanced mixing changed the density in the bottom boundary layer and subsequently in the upwelling front, which eventually weakened the geostrophic alongshore flow. The mass and stratification inputs of the lateral buoyant discharge weakened or even reversed geostrophic dynamics for alongshore and upslope transports. The reversed cross-shore density and elevation gradient induced by the buoyant influx weakened the alongshore current and the associated bottom friction effect. The upslope cross-shore transport was reduced due to weakened alongshore flow and the associated bottom Ekman transport. The mass of buoyant influx compensated for the wind-driven offshore transport in the upper layer. The upwelling could be reversed to downwelling when the transport of lateral influx exceeded the wind-driven offshore transport. The responses of upwelling circulation to tidal and lateral buoyancy forcing highlighted in this process-oriented study are fundamental for interpreting more complex wind-driven shelf circulation.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianping Gan, magan@ust.hk
Save