• Adcock, T. A. A., and P. H. Taylor, 2014: The physics of anomalous (‘rogue’) ocean waves. Rep. Prog. Phys., 77, 105901, https://doi.org/10.1088/0034-4885/77/10/105901.

    • Search Google Scholar
    • Export Citation
  • Adler, R. J., and J. E. Taylor, 2007: Random Fields and Geometry. Springer, 448 pp.

  • Banner, M., X. Barthelemy, F. Fedele, M. Allis, A. Benetazzo, F. Dias, and W. Peirson, 2014: Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett., 112, 114502, https://doi.org/10.1103/PhysRevLett.112.114502.

    • Search Google Scholar
    • Export Citation
  • Barthelemy, X., M. L. Banner, W. L. Peirson, F. Fedele, M. Allis, and F. Dias, 2018: On a unified breaking onset threshold for gravity waves in deep and intermediate depth water. J. Fluid Mech., 841, 463488, https://doi.org/10.1017/jfm.2018.93.

    • Search Google Scholar
    • Export Citation
  • Baxevani, A., and I. Rychlik, 2006: Maxima for Gaussian seas. Ocean Eng., 33, 895911, https://doi.org/10.1016/j.oceaneng.2005.06.006.

    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., 2006: Measurements of short water waves using stereo matched image sequences. Coast. Eng., 53, 10131032, https://doi.org/10.1016/j.coastaleng.2006.06.012.

    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., F. Fedele, G. Gallego, P.-C. Shih, and A. Yezzi, 2012: Offshore stereo measurements of gravity waves. Coast. Eng., 64, 127138, https://doi.org/10.1016/j.coastaleng.2012.01.007.

    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., F. Barbariol, F. Bergamasco, A. Torsello, S. Carniel, and M. Sclavo, 2015: Observation of extreme sea waves in a space–time ensemble. J. Phys. Oceanogr., 45, 22612275, https://doi.org/10.1175/JPO-D-15-0017.1.

    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., F. Barbariol, F. Bergamasco, L. Bertotti, J. Yoo, J.-S. Shim, and L. Cavaleri, 2021: On the extreme value statistics of spatio-temporal maximum sea waves under cyclone winds. Prog. Oceanogr., 197, 102642, https://doi.org/10.1016/j.pocean.2021.102642.

    • Search Google Scholar
    • Export Citation
  • Benjamin, T. B., and J. E. Feir, 1967: The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech., 27, 417430, https://doi.org/10.1017/S002211206700045X.

    • Search Google Scholar
    • Export Citation
  • Bergamasco, F., A. Torsello, M. Sclavo, F. Barbariol, and A. Benetazzo, 2017: WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves. Comput. Geosci., 107, 2836, https://doi.org/10.1016/j.cageo.2017.07.001.

    • Search Google Scholar
    • Export Citation
  • Bitner-Gregersen, E. M., O. Gramstad, A. K. Magnusson, and M. Malila, 2020: Challenges in description of nonlinear waves due to sampling variability. J. Mar. Sci. Eng., 8, 279, https://doi.org/10.3390/jmse8040279.

    • Search Google Scholar
    • Export Citation
  • Boccotti, P., 2000: Wave Mechanics for Ocean Engineering. Elsevier, 520 pp.

  • Breivik, Ø., and Coauthors, 2022: The impact of a reduced high-wind Charnock coefficient on wave growth with application to the North Sea, the Norwegian Sea and the Arctic Ocean.J. Geophys. Res. Oceans, 127, e2021JC018196, https://doi.org/10.1029/2021JC018196.

    • Search Google Scholar
    • Export Citation
  • Carini, R. J., C. C. Chickadel, and A. T. Jessup, 2021: Surf zone waves at the onset of breaking: 2. Predicting breaking and breaker type. J. Geophys. Res. Oceans, 126, e2020JC016935, https://doi.org/10.1029/2020JC016935.

    • Search Google Scholar
    • Export Citation
  • Cattrell, A. D., M. Srokosz, B. I. Moat, and R. Marsh, 2018: Can rogue waves be predicted using characteristic wave parameters? J. Geophys. Res. Oceans, 123, 56245636, https://doi.org/10.1029/2018JC013958.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., L. Bertotti, L. Torrisi, E. M. Bitner-Gregersen, M. Serio, and M. Onorato, 2012: Rogue waves in crossing seas: The Louis Majesty accident. J. Geophys. Res., 117, C00J10, https://doi.org/10.1029/2012JC007923.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., F. Barbariol, and A. Benetazzo, 2020: Wind–wave modeling: Where we are, where to go. J. Mar. Sci. Eng., 8, 260, https://doi.org/10.3390/jmse8040260.

    • Search Google Scholar
    • Export Citation
  • Christou, M., and K. Ewans, 2014: Field measurements of rogue water waves. J. Phys. Oceanogr., 44, 23172335, https://doi.org/10.1175/JPO-D-13-0199.1.

    • Search Google Scholar
    • Export Citation
  • Dematteis, G., T. Grafke, M. Onorato, and E. Vanden-Eijnden, 2019: Experimental evidence of hydrodynamic instantons: The universal route to rogue waves. Phys. Rev., 9, 041057, https://doi.org/10.1103/PhysRevX.9.041057.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and A. K. Magnusson, 2005: The role of meteorological focusing in generating rogue wave conditions. Proc. 14th ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 139–145, https://www.soest.hawaii.edu/PubServices/2005pdfs/Donelan.pdf.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and A. K. Magnusson, 2017: The making of the Andrea wave and other rogues. Sci. Rep., 7, 44124, https://doi.org/10.1038/srep44124.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. Hui, 1985: Directional spectra of wind-generated ocean waves. Philos. Trans. Roy. Soc., A315, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Dysthe, K., H. E. Krogstad, and P. Müller, 2008: Oceanic rogue waves. Annu. Rev. Fluid Mech., 40, 287310, https://doi.org/10.1146/annurev.fluid.40.111406.102203.

    • Search Google Scholar
    • Export Citation
  • Dysthe, K. B., K. Trulsen, H. E. Krogstad, and H. Socquet-Juglard, 2003: Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech., 478, 110, https://doi.org/10.1017/S0022112002002616.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2019: IFS Documentation CY46R1–Part VII: ECMWF wave model. ECMWF, 103 pp, https://www.ecmwf.int/node/19311.

  • Fedele, F., 2012: Space–time extremes in short-crested storm seas. J. Phys. Oceanogr., 42, 16011615, https://doi.org/10.1175/JPO-D-11-0179.1.

    • Search Google Scholar
    • Export Citation
  • Fedele, F., 2014: Geometric phases of water waves. Europhys. Lett., 107, 69001, https://doi.org/10.1209/0295-5075/107/69001.

  • Fedele, F., 2015: On the kurtosis of deep-water gravity waves. J. Fluid Mech., 782, 2536, https://doi.org/10.1017/jfm.2015.538.

  • Fedele, F., and M. A. Tayfun, 2009: On nonlinear wave groups and crest statistics. J. Fluid Mech., 620, 221239, https://doi.org/10.1017/S0022112008004424.

    • Search Google Scholar
    • Export Citation
  • Fedele, F., A. Benetazzo, G. Gallego, P.-C. Shih, A. Yezzi, F. Barbariol, and F. Ardhuin, 2013: Space–time measurements of oceanic sea states. Ocean Modell., 70, 103115, https://doi.org/10.1016/j.ocemod.2013.01.001.

    • Search Google Scholar
    • Export Citation
  • Fedele, F., J. Brennan, S. Ponce de León, J. Dudley, and F. Dias, 2016: Real world ocean rogue waves explained without the modulational instability. Sci. Rep., 6, 27715, https://doi.org/10.1038/srep27715.

    • Search Google Scholar
    • Export Citation
  • Fedele, F., J. Herterich, A. Tayfun, and F. Dias, 2019: Large nearshore storm waves off the Irish coast. Sci. Rep., 9, 15406, https://doi.org/10.1038/s41598-019-51706-8.

    • Search Google Scholar
    • Export Citation
  • Fedele, F., M. L. Banner, and X. Barthelemy, 2020: Crest speeds of unsteady surface water waves. J. Fluid Mech., 899, A5, https://doi.org/10.1017/jfm.2020.424.

    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., 2000: Wave crest distributions: Observations and second-order theory. J. Phys. Oceanogr., 30, 19311943, https://doi.org/10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., and C. Garrett, 2011: Dynamical and statistical explanations of observed occurrence rates of rogue waves. Nat. Hazards Earth Syst. Sci., 11, 14371446, https://doi.org/10.5194/nhess-11-1437-2011.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., and L. Cicon, 2022: Generation mechanism and prediction of an observed extreme rogue wave. Sci. Rep., 12, 1718, https://doi.org/10.1038/s41598-022-05671-4.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., C. J. Zappa, M. L. Banner, and R. P. Morison, 2013: Wave breaking in developing and mature seas. J. Geophys. Res. Oceans, 118, 45424552, https://doi.org/10.1002/jgrc.20334.

    • Search Google Scholar
    • Export Citation
  • Goda, Y., 1970: Estimation of the rate of irregular wave overtopping of seawalls. Rep. Port Harbour Res. Inst., 9, 341.

  • Gramstad, O., and K. Trulsen, 2007: Influence of crest and group length on the occurrence of freak waves. J. Fluid Mech., 582, 463472, https://doi.org/10.1017/S0022112007006507.

    • Search Google Scholar
    • Export Citation
  • Gramstad, O., E. M. Bitner-Gregersen, K. Trulsen, and J. C. Nieto Borge, 2018: Modulational instability and rogue waves in crossing sea states. J. Phys. Oceanogr., 48, 13171331, https://doi.org/10.1175/JPO-D-18-0006.1.

    • Search Google Scholar
    • Export Citation
  • Guimarães, P. V., F. Ardhuin, F. Bergamasco, F. Leckler, J.-F. Filipot, J.-S. Shim, V. Dulov, and A. Benetazzo, 2020: A data set of sea surface stereo images to resolve space-time wave fields. Sci. Data, 7, 145, https://doi.org/10.1038/s41597-020-0492-9.

    • Search Google Scholar
    • Export Citation
  • Haakenstad, H., Ø. Breivik, B. Furevik, M. Reistad, P. Bohlinger, and O. J. Aarnes, 2021: NORA3: A nonhydrostatic high-resolution hindcast of the North Sea, the Norwegian Sea, and the Barents Sea. J. Appl. Meteor. Climatol., 60, 14431464, https://doi.org/10.1175/JAMC-D-21-0029.1.

    • Search Google Scholar
    • Export Citation
  • Häfner, D., J. Gemmrich, and M. Jochum, 2021: Real-world rogue wave probabilities. Sci. Rep., 11, 10084, https://doi.org/10.1038/s41598-021-89359-1.

    • Search Google Scholar
    • Export Citation
  • Haver, S., 2004: A possible freak wave event measured at the Draupner platform January 1 1995. Proc. Rogue Waves 2004 Workshop, Brest, France, IFREMER, 18.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 2007: Waves in Oceanic and Coastal Waters. Cambridge University Press, 387 pp.

  • Holthuijsen, L. H., and T. H. C. Herbers, 1986: Statistics of breaking waves observed as whitecaps in the open sea. J. Phys. Oceanogr., 16, 290297, https://doi.org/10.1175/1520-0485(1986)016<0290:SOBWOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2003: Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr., 33, 863884, https://doi.org/10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2009: On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech., 637, 144, https://doi.org/10.1017/S0022112009008131.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., and M. Onorato, 2007: The intermediate water depth limit of the Zakharov equation and consequences for wave prediction. J. Phys. Oceanogr., 37, 23892400, https://doi.org/10.1175/JPO3128.1.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., and J.-R. Bidlot, 2009: On the extension of the freak wave warning system and its verification. ECMWF Tech. Memo. 588, 42 pp., www.ecmwf.int/sites/default/files/elibrary/2009/10243-extension-freak-wave-warning-system-and-its-verification.pdf.

  • Johnson, D., 2002: DIrectional WAve SPectra Toolbox Version 1.3. MetOcean Solutions Ltd., https://github.com/metocean/diwasp.

  • Karmpadakis, I., 2018: Wave statistics in intermediate and shallow water depths. Ph.D. thesis, Civil and Environmental Engineering, Imperial College London, 284 pp., https://spiral.imperial.ac.uk/handle/10044/1/87397.

  • Karmpadakis, I., and C. Swan, 2020: On the average shape of the largest waves in finite water depths. J. Phys. Oceanogr., 50, 10231043, https://doi.org/10.1175/JPO-D-19-0165.1.

    • Search Google Scholar
    • Export Citation
  • Karmpadakis, I., C. Swan, and M. Christou, 2019: Laboratory investigation of crest height statistics in intermediate water depths. Proc. Roy. Soc., 475A, 20190183, https://doi.org/10.1098/rspa.2019.0183.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., and W. K. Melville, 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604, https://doi.org/10.1175/2010JPO4383.1.

    • Search Google Scholar
    • Export Citation
  • Krogstad, H. E., S. F. Barstow, J. P. Mathisen, L. Lønseth, A. K. Magnusson, and M. A. Donelan, 2008: Extreme waves in the long-term wave measurements at Ekofisk. Proc. Rogue Waves 2008 Workshop, Brest, France, Ifremer, 2333, https://archimer.ifremer.fr/doc/00133/24444/.

  • Kuik, A. J., G. P. Van Vledder, and L. H. Holthuijsen, 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18, 10201034, https://doi.org/10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latheef, M., and C. Swan, 2013: A laboratory study of wave crest statistics and the role of directional spreading. Proc. Roy. Soc., 469A, 20120696, https://doi.org/10.1098/rspa.2012.0696.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1963: The effect of non-linearities on statistical distributions in the theory of sea waves. J. Fluid Mech., 17, 459480, https://doi.org/10.1017/S0022112063001452.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1975: On the joint distribution of the periods and amplitudes of sea waves. J. Geophys. Res., 80, 26882694, https://doi.org/10.1029/JC080i018p02688.

    • Search Google Scholar
    • Export Citation
  • Lygre, A., and H. E. Krogstad, 1986: Maximum entropy estimation of the directional distribution in ocean wave spectra. J. Phys. Oceanogr., 16, 20522060, https://doi.org/10.1175/1520-0485(1986)016<2052:MEEOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magnusson, A. K., and M. A. Donelan, 2013: The Andrea wave characteristics of a measured North Sea rogue wave. J. Offshore Mech. Arctic Eng., 135, 031108, https://doi.org/10.1115/1.4023800.

    • Search Google Scholar
    • Export Citation
  • Makri, I. M., S. M. Rose, M. Christou, R. Gibson, and G. Feld, 2016: Examining field measurements of deep-water crest statistics. Proc. ASME 2016 35th Int. Conf. on Ocean, Offshore and Arctic Engineering. Volume 7: Ocean Engineering, American Society of Mechanical Engineers, V007T06A092, https://asmedigitalcollection.asme.org/OMAE/proceedings-abstract/OMAE2016/49989/V007T06A092/281031.

  • Malila, M. P., P. Bohlinger, S. Støle-Hentschel, O. Breivik, G. Hope, and A. K. Magnusson, 2022a: A non-parametric, data-driven approach to despiking ocean surface wave time series. J. Atmos. Oceanic Technol., 39, 7190, https://doi.org/10.1175/JTECH-D-21-0067.1.

    • Search Google Scholar
    • Export Citation
  • Malila, M. P., J. Thomson, Ø. Breivik, A. Benetazzo, B. Scanlon, and B. Ward, 2022b: On the groupiness and intermittency of oceanic whitecaps. J. Geophys. Res. Oceans, 127, e2021JC017938, https://doi.org/10.1029/2021JC017938.

    • Search Google Scholar
    • Export Citation
  • McAllister, M. L., S. Draycott, T. A. A. Adcock, P. H. Taylor, and T. S. van den Bremer, 2019: Laboratory recreation of the Draupner wave and the role of breaking in crossing seas. J. Fluid Mech., 860, 767786, https://doi.org/10.1017/jfm.2018.886.

    • Search Google Scholar
    • Export Citation
  • Mendes, S., A. Scotti, and P. Stansell, 2021: On the physical constraints for the exceeding probability of deep water rogue waves. Appl. Ocean Res., 108, 102402, https://doi.org/10.1016/j.apor.2020.102402.

    • Search Google Scholar
    • Export Citation
  • Miche, A., 1944: Mouvements ondulatoires de la mer en profondeur croissante ou décroissante. Première partie. Mouvements ondulatoires périodiques et cylindriques en profondeur constante. Ann. Ponts Chaussees, 114, 4278.

    • Search Google Scholar
    • Export Citation
  • Michell, J. H., 1893: On the highest waves in water. London Edinburgh Dublin Philos. Mag. J. Sci., 36, 430437, https://doi.org/10.1080/14786449308620499.

    • Search Google Scholar
    • Export Citation
  • Mori, N., and P. A. E. M. Janssen, 2006: On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr., 36, 14711483, https://doi.org/10.1175/JPO2922.1.

    • Search Google Scholar
    • Export Citation
  • Mori, N., M. Onorato, P. A E. M. Janssen, A. R. Osborne, and M. Serio, 2007: On the extreme statistics of long-crested deep water waves: Theory and experiments. J. Geophys. Res., 112, C09011, https://doi.org/10.1029/2006JC004024.

    • Search Google Scholar
    • Export Citation
  • Mori, N., M. Onorato, and P. A. E. M. Janssen, 2011: On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr., 41, 14841497, https://doi.org/10.1175/2011JPO4542.1.

    • Search Google Scholar
    • Export Citation
  • Perlin, M., W. Choi, and Z. Tian, 2013: Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech., 45, 115145, https://doi.org/10.1146/annurev-fluid-011212-140721.

    • Search Google Scholar
    • Export Citation
  • Petrova, P. G., and C. Guedes Soares, 2011: Wave height distributions in bimodal sea states from offshore basins. Ocean Eng., 38, 658672, https://doi.org/10.1016/j.oceaneng.2010.12.018.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, https://doi.org/10.1017/S0022112085002221.

    • Search Google Scholar
    • Export Citation
  • Pleskachevsky, A. L., S. Lehner, and W. Rosenthal, 2012: Storm observations by remote sensing and influences of gustiness on ocean waves and on generation of rogue waves. Ocean Dyn., 62, 13351351, https://doi.org/10.1007/s10236-012-0567-z.

    • Search Google Scholar
    • Export Citation
  • Ponce de León, S., and C. Guedes Soares, 2014: Extreme wave parameters under North Atlantic extratropical cyclones. Ocean Modell., 81, 7888, https://doi.org/10.1016/j.ocemod.2014.07.005.

    • Search Google Scholar
    • Export Citation
  • Power, H. E., M. G. Hughes, T. Aagaard, and T. E. Baldock, 2010: Nearshore wave height variation in unsaturated surf. J. Geophys. Res., 115, C08030, https://doi.org/10.1029/2009JC005758.

    • Search Google Scholar
    • Export Citation
  • Rainey, R. C. T., and M. S. Longuet-Higgins, 2006: A close one-term approximation to the highest Stokes wave on deep water. Ocean Eng., 33, 20122024, https://doi.org/10.1016/j.oceaneng.2005.09.014.

    • Search Google Scholar
    • Export Citation
  • Reichert, K., K. Hessner, J. C. Nieto Borge, and J. Dittmer, 1999: WaMoS II: A radar based wave and current monitoring system. The Ninth Int. Offshore and Polar Engineering Conf., Brest, France, OnePetro, 1–5, https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE99/All-ISOPE99/ISOPE-I-99-246/24940.

  • Saket, A., W. L. Peirson, M. L. Banner, and M. J. Allis, 2018: On the influence of wave breaking on the height limits of two-dimensional wave groups propagating in uniform intermediate depth water. Coast. Eng., 133, 159165, https://doi.org/10.1016/j.coastaleng.2017.12.015.

    • Search Google Scholar
    • Export Citation
  • Schwendeman, M. S., and J. Thomson, 2017: Sharp-crested breaking surface waves observed from a ship-based stereo video system. J. Phys. Oceanogr., 47, 775792, https://doi.org/10.1175/JPO-D-16-0187.1.

    • Search Google Scholar
    • Export Citation
  • Serio, M., M. Onorato, A. R. Osborne, and P. A. E. M. Janssen, 2005: On the computation of the Benjamin-Feir Index. Nuovo Cimento, 28C, 893903, https://doi.org/10.1393/ncc/i2005-10134-1.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441455.

  • Støle-Hentschel, S., K. Trulsen, L. Rye, and A. Raustøl, 2018: Extreme wave statistics of counter-propagating, irregular, long-crested sea states. Phys. Fluids, 30, 067102, https://doi.org/10.1063/1.5034212.

    • Search Google Scholar
    • Export Citation
  • Tayfun, M. A., 1980: Narrow-band nonlinear sea waves. J. Geophys. Res., 85, 15481552, https://doi.org/10.1029/JC085iC03p01548.

  • Tayfun, M. A., 1986: On narrow-band representation of ocean waves: 1. Theory. J. Geophys. Res., 91, 77437752, https://doi.org/10.1029/JC091iC06p07743.

    • Search Google Scholar
    • Export Citation
  • Tayfun, M. A., and F. Fedele, 2007: Wave-height distributions and nonlinear effects. Ocean Eng., 34, 16311649, https://doi.org/10.1016/j.oceaneng.2006.11.006.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., and A. T. Jessup, 2009: A Fourier-based method for the distribution of breaking crests from video observations. J. Atmos. Oceanic Technol., 26, 16631671, https://doi.org/10.1175/2009JTECHO622.1.

    • Search Google Scholar
    • Export Citation
  • Toffoli, A., A. V. Babanin, M. Onorato, and T. Waseda, 2010a: Maximum steepness of oceanic waves: Field and laboratory experiments. Geophys. Res. Lett., 37, L05603, https://doi.org/10.1029/2009GL041771.

    • Search Google Scholar
    • Export Citation
  • Toffoli, A., O. Gramstad, K. Trulsen, J. Monbaliu, E. M. Bitner-Gregersen, and M. Onorato, 2010b: Evolution of weakly nonlinear random directional waves: Laboratory experiments and numerical simulations. J. Fluid Mech., 664, 313336, https://doi.org/10.1017/S002211201000385X.

    • Search Google Scholar
    • Export Citation
  • Toffoli, A., A. V. Babanin, M. A. Donelan, B. K. Haus, and D. Jeong, 2011: Estimating sea spray volume with a laser altimeter. J. Atmos. Oceanic Technol., 28, 11771183, https://doi.org/10.1175/2011JTECHO827.1.

    • Search Google Scholar
    • Export Citation
  • Trulsen, K., J. C. Nieto Borge, O. Gramstad, L. Aouf, and J.-M. Lefèvre, 2015: Crossing sea state and rogue wave probability during the Prestige accident. J. Geophys. Res. Oceans, 120, 71137136, https://doi.org/10.1002/2015JC011161.

    • Search Google Scholar
    • Export Citation
  • Tucker, M. J., P. G. Challenor, and D. J. T. Carter, 1984: Numerical simulation of a random sea: A common error and its effect upon wave group statistics. Appl. Ocean Res., 6, 118122, https://doi.org/10.1016/0141-1187(84)90050-6.

    • Search Google Scholar
    • Export Citation
  • Vieira, M., P. V. Guimarães, N. Violante-Carvalho, A. Benetazzo, F. Bergamasco, and H. Pereira, 2020: A low-cost stereo video system for measuring directional wind waves. J. Mar. Sci. Eng., 8, 831, https://doi.org/10.3390/jmse8110831.

    • Search Google Scholar
    • Export Citation
  • Voermans, J. J., A. V. Babanin, C. Kirezci, J. T. Carvalho, M. F. Santini, B. F. Pavani, and L. P. Pezzi, 2021: Wave anomaly detection in wave measurements. J. Atmos. Oceanic Technol., 38, 525536, https://doi.org/10.1175/JTECH-D-20-0090.1.

    • Search Google Scholar
    • Export Citation
  • WAMDI Group, 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 17751810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zippel, S., and J. Thomson, 2017: Surface wave breaking over sheared currents: Observations from the mouth of the Columbia River. J. Geophys. Res. Oceans, 122, 33113328, https://doi.org/10.1002/2016JC012498.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 848 848 35
Full Text Views 201 201 11
PDF Downloads 257 257 11

Statistical and Dynamical Characteristics of Extreme Wave Crests Assessed with Field Measurements from the North Sea

Mika P. MalilaaNorwegian Meteorological Institute, Bergen, Norway
bGeophysical Institute, University of Bergen, Bergen, Norway

Search for other papers by Mika P. Malila in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2731-0901
,
Francesco BarbariolcInstitute of Marine Sciences (ISMAR)–National Research Council (CNR), Venice, Italy

Search for other papers by Francesco Barbariol in
Current site
Google Scholar
PubMed
Close
,
Alvise BenetazzocInstitute of Marine Sciences (ISMAR)–National Research Council (CNR), Venice, Italy

Search for other papers by Alvise Benetazzo in
Current site
Google Scholar
PubMed
Close
,
Øyvind BreivikaNorwegian Meteorological Institute, Bergen, Norway
bGeophysical Institute, University of Bergen, Bergen, Norway

Search for other papers by Øyvind Breivik in
Current site
Google Scholar
PubMed
Close
,
Anne Karin MagnussonaNorwegian Meteorological Institute, Bergen, Norway

Search for other papers by Anne Karin Magnusson in
Current site
Google Scholar
PubMed
Close
,
Jim ThomsondApplied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Jim Thomson in
Current site
Google Scholar
PubMed
Close
, and
Brian WardeAirSea Laboratory, Centre for Ocean Research and Exploration, Ryan Institute, National University of Ireland, Galway, Ireland

Search for other papers by Brian Ward in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wave crests of unexpected height and steepness pose a danger to activities at sea, and long-term field measurements provide important clues for understanding the environmental conditions that are conducive to their generation and behavior. We present a novel dataset of high-frequency laser altimeter measurements of the sea surface elevation gathered over a period of 18 years from 2003 to 2020 on an offshore platform in the central North Sea. Our analysis of crest height distributions in the dataset shows that mature, high sea states with high spectral steepness and narrow directional spreading exhibit crest height statistics that significantly deviate from standard second-order models. Conversely, crest heights in developing sea states with similarly high steepness but wide directional spread correspond well to second-order theory adjusted for broad frequency bandwidth. The long-term point time series measurements are complemented with space–time stereo video observations from the same location, collected during five separate storm events during the 2019/20 winter season. An examination of the crest dynamics of the space–time extreme wave crests in the stereo video dataset reveals that the crest speeds exhibit a slowdown localized around the moment of maximum crest elevation, in line with prevailing theory on nonlinear wave group dynamics. Extending on previously published observations focused on breaking crests, our results are consistent for both breaking and nonbreaking extreme crests. We show that wave crest steepness estimated from time series using the linear dispersion relation may overestimate the geometrically measured crest steepness by up to 25% if the crest speed slowdown is not taken into account.

Significance Statement

Better understanding of the statistics and dynamical behavior of extreme ocean surface wave crests is crucial for improving the safety of various operations at sea. Our study provides new, long-term field evidence of the combined effects of wave field steepness and directionality on the statistical distributions of crest heights in storm conditions. Moreover, we show that the dynamical characteristics of extreme wave crests are well described by recently identified nonlinear wave group dynamics. This finding has implications, for example, for wave force calculations and the treatment of wave breaking in numerical wave models.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mika P. Malila, mikapm@met.no

Abstract

Wave crests of unexpected height and steepness pose a danger to activities at sea, and long-term field measurements provide important clues for understanding the environmental conditions that are conducive to their generation and behavior. We present a novel dataset of high-frequency laser altimeter measurements of the sea surface elevation gathered over a period of 18 years from 2003 to 2020 on an offshore platform in the central North Sea. Our analysis of crest height distributions in the dataset shows that mature, high sea states with high spectral steepness and narrow directional spreading exhibit crest height statistics that significantly deviate from standard second-order models. Conversely, crest heights in developing sea states with similarly high steepness but wide directional spread correspond well to second-order theory adjusted for broad frequency bandwidth. The long-term point time series measurements are complemented with space–time stereo video observations from the same location, collected during five separate storm events during the 2019/20 winter season. An examination of the crest dynamics of the space–time extreme wave crests in the stereo video dataset reveals that the crest speeds exhibit a slowdown localized around the moment of maximum crest elevation, in line with prevailing theory on nonlinear wave group dynamics. Extending on previously published observations focused on breaking crests, our results are consistent for both breaking and nonbreaking extreme crests. We show that wave crest steepness estimated from time series using the linear dispersion relation may overestimate the geometrically measured crest steepness by up to 25% if the crest speed slowdown is not taken into account.

Significance Statement

Better understanding of the statistics and dynamical behavior of extreme ocean surface wave crests is crucial for improving the safety of various operations at sea. Our study provides new, long-term field evidence of the combined effects of wave field steepness and directionality on the statistical distributions of crest heights in storm conditions. Moreover, we show that the dynamical characteristics of extreme wave crests are well described by recently identified nonlinear wave group dynamics. This finding has implications, for example, for wave force calculations and the treatment of wave breaking in numerical wave models.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mika P. Malila, mikapm@met.no
Save