• Abdelrahman, S. M., 1986: Shore wave modulation due to infragravity waves in the nearshore zone, with applications. Ph.D. dissertation, Naval Postgraduate School, 128 pp.

  • Almar, R., A. Nicolae Lerma, B. Castelle, and T. Scott, 2018: On the influence of reflection over a rhythmic swash zone on surf zone dynamics. Ocean Dyn., 68, 899909, https://doi.org/10.1007/s10236-018-1165-5.

    • Search Google Scholar
    • Export Citation
  • Baldock, T. E., 2006: Long wave generation by the shoaling and breaking of transient wave groups on a beach. Proc. Roy. Soc., 462, 18531876, https://doi.org/10.1098/rspa.2005.1642.

    • Search Google Scholar
    • Export Citation
  • Battjes, J. A., 1974: Surf similarity. 14th Int. Conf. on Coastal Engineering, Copenhagen, Denmark, American Society of Civil Engineers, 466–480, https://icce-ojs-tamu.tdl.org/icce/article/view/1971/1464.

  • Battjes, J. A., H. J. Bakkenes, T. T. Janssen, and A. R. van Dongeren, 2004: Shoaling of subharmonic gravity waves. J. Geophys. Res., 109, C02009, https://doi.org/10.1029/2003JC001863.

    • Search Google Scholar
    • Export Citation
  • Bayındır, C., and S. Farazande, 2021: The solution of the long-wave equation for various nonlinear depth and breadth profiles in the power-law form. Dyn. Atmos. Oceans, 96, 101254, https://doi.org/10.1016/j.dynatmoce.2021.101254.

    • Search Google Scholar
    • Export Citation
  • Bender, C. J., and R. G. Dean, 2003: Wave transformation by two-dimensional bathymetric anomalies with sloped transitions. Coastal Eng., 50, 6184, https://doi.org/10.1016/j.coastaleng.2003.08.002.

    • Search Google Scholar
    • Export Citation
  • Bertin, X., K. Martins, A. Bakker, T. Chataigner, T. Guérin, T. Coulombier, and O. Viron, 2020: Energy transfers and reflection of infragravity waves at a dissipative beach under storm waves. J. Geophys. Res. Oceans, 125, e2019JC015714, https://doi.org/10.1029/2019JC015714.

    • Search Google Scholar
    • Export Citation
  • Bowen, A. J., and R. T. Guza, 1978: Edge waves and surf beat. J. Geophys. Res., 83, 19131920, https://doi.org/10.1029/JC083iC04p01913.

    • Search Google Scholar
    • Export Citation
  • Buckley, M. L., R. J. Lowe, J. E. Hansen, A. R. Van Dongeren, and C. D. Storlazzi, 2018: Mechanisms of wave-driven water level variability on reef-fringed coastlines. J. Geophys. Res. Oceans, 123, 38113831, https://doi.org/10.1029/2018JC013933.

    • Search Google Scholar
    • Export Citation
  • Chao, Y.-Y., and W. J. Pierson, 1972: Experimental studies of the refraction of uniform wave trains and transient wave groups near a straight caustic. J. Geophys. Res., 77, 45454554, https://doi.org/10.1029/JC077i024p04545.

    • Search Google Scholar
    • Export Citation
  • Cheriton, O. M., C. D. Storlazzi, and K. J. Rosenberger, 2016: Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding. J. Geophys. Res. Oceans, 121, 31213140, https://doi.org/10.1002/2015JC011231.

    • Search Google Scholar
    • Export Citation
  • Contardo, S., and G. Symonds, 2013: Infragravity response to variable wave forcing in the nearshore. J. Geophys. Res. Oceans, 118, 70957106, https://doi.org/10.1002/2013JC009430.

    • Search Google Scholar
    • Export Citation
  • Contardo, S., and G. Symonds, 2015: Sandbar straightening under wind-sea and swell forcing. Mar. Geol., 368, 2541, https://doi.org/10.1016/j.margeo.2015.06.010.

    • Search Google Scholar
    • Export Citation
  • Contardo, S., G. Symonds, and F. Dufois, 2018: Breakpoint forcing revisited: Phase between forcing and response. J. Geophys. Res. Oceans, 123, 13541363, https://doi.org/10.1002/2017JC013138.

    • Search Google Scholar
    • Export Citation
  • Contardo, S., G. Symonds, L. E. Segura, R. J. Lowe, and J. E. Hansen, 2019: Infragravity wave energy partitioning in the surf zone in response to wind-sea and swell forcing. J. Mar. Sci. Eng., 7, 383, https://doi.org/10.3390/jmse7110383.

    • Search Google Scholar
    • Export Citation
  • Contardo, S., R. J. Lowe, J. E. Hansen, D. P. Rijnsdorp, F. Dufois, and G. Symonds, 2021: Free and forced components of shoaling long waves in the absence of short wave breaking. J. Phys. Oceanogr., 51, 14651487, https://doi.org/10.1175/JPO-D-20-0214.1.

    • Search Google Scholar
    • Export Citation
  • de Bakker, A. T. M., M. F. S. Tissier, and B. G. Ruessink, 2014: Shoreline dissipation of infragravity waves. Cont. Shelf Res., 72, 7382, https://doi.org/10.1016/j.csr.2013.11.013.

    • Search Google Scholar
    • Export Citation
  • de Beer, A. F., R. T. McCall, J. W. Long, M. F. S. Tissier, and A. J. H. M. Reniers, 2021: Simulating wave runup on an intermediate–reflective beach using a wave-resolving and a wave-averaged version of XBeach. Coastal Eng., 163, 103788, https://doi.org/10.1016/j.coastaleng.2020.103788.

    • Search Google Scholar
    • Export Citation
  • Dean, R. G., 1964: Long wave modification by linear transitions. J. Waterw. Harbors Div., 90 (1), 129, https://doi.org/10.1061/JWHEAU.0000351.

    • Search Google Scholar
    • Export Citation
  • Didenkulova, I., E. Pelinovsky, and T. Soomere, 2009: Long surface wave dynamics along a convex bottom. J. Geophys. Res., 114, C07006, https://doi.org/10.1029/2008JC005027.

    • Search Google Scholar
    • Export Citation
  • Eckart, C., 1951: Surface waves on water of variable depth. Wave Rep. 100, 60 pp., http://resolver.tudelft.nl/uuid:ab1ada31-db80-4601-8911-b261f36c2198.

  • Elgar, S., T. H. C. Herbers, M. Okihiro, J. Oltman-Shay, and R. T. Guza, 1992: Observations of infragravity waves. J. Geophys. Res., 97, 15 57315 577, https://doi.org/10.1029/92JC01316.

    • Search Google Scholar
    • Export Citation
  • Elgar, S., T. H. C. Herbers, and R. T. Guza, 1994: Reflection of ocean surface gravity waves from a natural beach. J. Phys. Oceanogr., 24, 15031511, https://doi.org/10.1175/1520-0485(1994)024<1503:ROOSGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fiedler, J. W., P. B. Smit, K. L. Brodie, J. McNinch, and R. T. Guza, 2018: Numerical modeling of wave runup on steep and mildly sloping natural beaches. Coastal Eng., 131, 106113, https://doi.org/10.1016/j.coastaleng.2017.09.004.

    • Search Google Scholar
    • Export Citation
  • Fiedler, J. W., A. P. Young, B. C. Ludka, W. C. O’Reilly, C. Henderson, M. A. Merrifield, and R. T. Guza, 2020: Predicting site-specific storm wave run-up. Nat. Hazards, 104, 493517, https://doi.org/10.1007/s11069-020-04178-3.

    • Search Google Scholar
    • Export Citation
  • Friedrichs, K. O., 1948: Waves on a shallow sloping beach. Commun. Pure Appl. Math., 1, 109134, https://doi.org/10.1002/cpa.3160010202.

    • Search Google Scholar
    • Export Citation
  • Gawehn, M., A. van Dongeren, A. van Rooijen, C. D. Storlazzi, O. M. Cheriton, and A. Reniers, 2016: Identification and classification of very low frequency waves on a coral reef flat. J. Geophys. Res. Oceans, 121, 75607574, https://doi.org/10.1002/2016JC011834.

    • Search Google Scholar
    • Export Citation
  • Green, G., 1838: On the motion of waves in a variable canal of small depth and width. Trans. Cambridge Philos. Soc., 6, 457.

  • Guedes, R. M. C., K. R. Bryan, and G. Coco, 2013: Observations of wave energy fluxes and swash motions on a low-sloping, dissipative beach. J. Geophys. Res. Oceans, 118, 36513669, https://doi.org/10.1002/jgrc.20267.

    • Search Google Scholar
    • Export Citation
  • Guza, R. T., and R. E. Davis, 1974: Excitation of edge waves by waves incident on a beach. J. Geophys. Res., 79, 12851291, https://doi.org/10.1029/JC079i009p01285.

    • Search Google Scholar
    • Export Citation
  • Guza, R. T., and A. J. Bowen, 1976: Resonant interactions for waves breaking on a beach. Proc. 15th Conf. on Coastal Engineering, Honolulu, HI, American Society of Civil Engineers, 560–579, https://icce-ojs-tamu.tdl.org/icce/article/view/3080/2745.

  • Henderson, S. M., and A. J. Bowen, 2002: Observations of surf beat forcing and dissipation. J. Geophys. Res., 107, 3193, https://doi.org/10.1029/2000JC000498.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. M., R. T. Guza, S. Elgar, T. H. C. Herbers, and A. J. Bowen, 2006: Nonlinear generation and loss of infragravity wave energy. J. Geophys. Res., 111, C12007, https://doi.org/10.1029/2006JC003539.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 2007: Waves in Oceanic and Coastal Waters. Cambridge University Press, 387 pp.

  • Inch, K., M. Davidson, G. Masselink, and P. Russell, 2015: Propagation and dissipation of infragravity waves on a dissipative beach with energetic wave forcing. The Proceedings of the Coastal Sediments 2015, P. Wang, J. D. Rosati, and J. Cheng, Eds., World Scientific, 1–12, https://doi.org/10.1142/9789814689977_0071.

  • Iribarren Cavanilles, R., and M. Casto Nogales, 1949: Protection des ports. PIANC Rep., 50 pp., http://resolver.tudelft.nl/uuid:7ab718ff-a74d-4141-8c3f-413044c751c4.

  • Koh, R. C. Y., and B. Le Méhauté, 1966: Wave shoaling. J. Geophys. Res., 71, 20052012, https://doi.org/10.1029/JZ071i008p02005.

  • Lamb, H., 1932: Hydrodynamics. 6th ed. Dover Publications, 738 pp.

  • Lara, J. L., A. Ruju, and I. J. Losada, 2010: Reynolds averaged Navier-Stokes modelling of long waves induced by a transient wave group on a beach. Proc. Roy. Soc., A467, 12151242, https://doi.org/10.1098/rspa.2010.0331.

    • Search Google Scholar
    • Export Citation
  • Liao, Z., S. Li, Y. Liu, and Q. Zou, 2021: An analytical spectral model for infragravity waves over topography in intermediate and shallow water under nonbreaking conditions. J. Phys. Oceanogr., 51, 27492765, https://doi.org/10.1175/JPO-D-20-0164.1.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1962: Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. J. Fluid Mech., 13, 481504, https://doi.org/10.1017/S0022112062000877.

    • Search Google Scholar
    • Export Citation
  • Madsen, O. S., and S. M. White, 1976: Reflection and transmission characteristics of porous rubble-mound breakwaters. CERC Misc. Rep. 76-5, U.S. Army Corps of Engineers, 138 pp., https://repository.tudelft.nl/islandora/object/uuid%3Ad82e594c-ed8c-4e18-b0fd-0ead288ad5a4.

  • Madsen, P. A., and D. R. Fuhrman, 2008: Run-up of tsunamis and long waves in terms of surf-similarity. Coastal Eng., 55, 209223, https://doi.org/10.1016/j.coastaleng.2007.09.007.

    • Search Google Scholar
    • Export Citation
  • Masselink, G., 1995: Group bound long waves as a source of infragravity energy in the surf zone. Cont. Shelf Res., 15, 15251547, https://doi.org/10.1016/0278-4343(95)00037-2.

    • Search Google Scholar
    • Export Citation
  • Mei, C. C., 1989: The Applied Dynamics of Ocean Surface Waves. World Scientific Publishing, 768 pp.

  • Mei, C. C., and C. Benmoussa, 1984: Long waves induced by short-wave groups over an uneven bottom. J. Fluid Mech., 139, 219235, https://doi.org/10.1017/S0022112084000331.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., J. M. Becker, M. Ford, and Y. Yao, 2014: Observations and estimates of wave-driven water level extremes at the Marshall Islands. Geophys. Res. Lett., 41, 72457253, https://doi.org/10.1002/2014GL061005.

    • Search Google Scholar
    • Export Citation
  • Miche, M., 1951: Le pouvoir réfléchissant des ouvrages maritimes exposés à l’action de la houle. Ann. Ponts Chaussees, 121, 285319.

    • Search Google Scholar
    • Export Citation
  • Moura, T., and T. E. Baldock, 2017: Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone. J. Geophys. Res. Oceans, 122, 31063122, https://doi.org/10.1002/2016JC012233.

    • Search Google Scholar
    • Export Citation
  • Moura, T., and T. E. Baldock, 2019: The influence of free long wave generation on the shoaling of forced infragravity waves. J. Mar. Sci. Eng., 7, 305, https://doi.org/10.3390/jmse7090305.

    • Search Google Scholar
    • Export Citation
  • Munk W. H., 1949: Surf beats. Eos, Trans. Amer. Geophys. Union, 30, 849854, https://doi.org/10.1029/TR030i006p00849.

  • Nielsen, P., 2017: Surf beat “shoaling.” Coastal Dynamics 2017, Helsingor, Denmark, Coastal Dynamics Steering Committee, 443–450, http://coastaldynamics2017.dk/onewebmedia/198_Nielsen.pdf.

  • Okihiro, M., and R. T. Guza, 1995: Infragravity energy modulation by tides. J. Geophys. Res., 100, 16 14316 148, https://doi.org/10.1029/95JC01545.

    • Search Google Scholar
    • Export Citation
  • Padilla, E. M., and J. M. Alsina, 2017: Transfer and dissipation of energy during wave group propagation on a gentle beach slope. J. Geophys. Res. Oceans, 122, 67736794, https://doi.org/10.1002/2017JC012703.

    • Search Google Scholar
    • Export Citation
  • Péquignet, A. C. N., J. M. Becker, M. A. Merrifield, and J. Aucan, 2009: Forcing of resonant modes on a fringing reef during tropical storm Man-Yi. Geophys. Res. Lett., 36, L03607, https://doi.org/10.1029/2008GL036259.

    • Search Google Scholar
    • Export Citation
  • Péquignet, A. C. N., J. M. Becker, and M. A. Merrifield, 2014: Energy transfer between wind waves and low-frequency oscillations on a fringing reef, Ipan, Guam. J. Geophys. Res. Oceans, 119, 67096724, https://doi.org/10.1002/2014JC010179.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, A., R. Lowe, G. Symonds, A. Van Dongeren, and C. Moore, 2012: The dynamics of infragravity wave transformation over a fringing reef. J. Geophys. Res., 117, C11022, https://doi.org/10.1029/2012JC008310.

    • Search Google Scholar
    • Export Citation
  • Quataert, E., C. Storlazzi, A. van Dongeren, and R. McCall, 2020: The importance of explicitly modelling sea-swell waves for runup on reef-lined coasts. Coastal Eng., 160, 103704, https://doi.org/10.1016/j.coastaleng.2020.103704.

    • Search Google Scholar
    • Export Citation
  • Reniers, A. J. H. M., A. R. van Dongeren, J. A. Battjes, and E. B. Thornton, 2002: Linear modeling of infragravity waves during Delilah. J. Geophys. Res., 107, 3137, https://doi.org/10.1029/2001JC001083.

    • Search Google Scholar
    • Export Citation
  • Roelvink, D., A. Reniers, A. van Dongeren, J. van Thiel de Vries, R. McCall, and J. Lescinski, 2009: Modelling storm impacts on beaches, dunes and barrier islands. Coastal Eng., 56, 11331152, https://doi.org/10.1016/j.coastaleng.2009.08.006.

    • Search Google Scholar
    • Export Citation
  • Ruessink, B. G., 1998: Bound and free infragravity waves in the nearshore zone under breaking and nonbreaking conditions. J. Geophys. Res., 103, 12 79512 805, https://doi.org/10.1029/98JC00893.

    • Search Google Scholar
    • Export Citation
  • Ruju, A., J. L. Lara, and I. J. Losada, 2012: Radiation stress and low-frequency energy balance within the surf zone: A numerical approach. Coastal Eng., 68, 4455, https://doi.org/10.1016/j.coastaleng.2012.05.003.

    • Search Google Scholar
    • Export Citation
  • Ruju, A., J. L. Lara, and I. J. Losada, 2014: Numerical analysis of run-up oscillations under dissipative conditions. Coastal Eng., 86, 4556, https://doi.org/10.1016/j.coastaleng.2014.01.010.

    • Search Google Scholar
    • Export Citation
  • Russell, P. E., 1993: Mechanisms for beach erosion during storms. Cont. Shelf Res., 13, 12431265, https://doi.org/10.1016/0278-4343(93)90051-X.

    • Search Google Scholar
    • Export Citation
  • Schäffer, H. A., 1993: Infragravity waves induced by short-wave groups. J. Fluid Mech., 247, 551588, https://doi.org/10.1017/S0022112093000564.

    • Search Google Scholar
    • Export Citation
  • Seelig, W. N., and J. P. Ahrens, 1981: Estimation of wave reflection and energy dissipation coefficients for beaches, revetments, and breakwaters. U.S. Army Coastal Engineering Research Center Tech. Paper 81-1, 44 pp., https://erdc-library.erdc.dren.mil/jspui/bitstream/11681/25428/1/Technical%20Paper%20No%2081-1.pdf.

  • Sheremet, A., R. T. Guza, S. Elgar, and T. H. C. Herbers, 2002: Observations of nearshore infragravity waves: Seaward and shoreward propagating components. J. Geophys. Res., 107, 10-110-10, https://doi.org/10.21236/ADA409757.

    • Search Google Scholar
    • Export Citation
  • Stockdon, H. F., R. A. Holman, P. A. Howd, and A. H. Sallenger, 2006: Empirical parameterization of setup, swash, and runup. Coastal Eng., 53, 573588, https://doi.org/10.1016/j.coastaleng.2005.12.005.

    • Search Google Scholar
    • Export Citation
  • Suhayda, J. N., 1974: Standing waves on beaches. J. Geophys. Res., 79, 30653071, https://doi.org/10.1029/JC079i021p03065.

  • Svendsen, I. A., and J. B. Hansen, 1977: The wave height variation for regular waves in shoaling water. Coastal Eng., 1, 261284, https://doi.org/10.1016/0378-3839(77)90018-7.

    • Search Google Scholar
    • Export Citation
  • Symonds, G., and A. J. Bowen, 1984: Interactions of nearshore bars with incoming wave groups. J. Geophys. Res., 89, 19531959, https://doi.org/10.1029/JC089iC02p01953.

    • Search Google Scholar
    • Export Citation
  • Symonds, G., D. A. Huntley, and A. J. Bowen, 1982: Two-dimensional surf beat: Long wave generation by a time-varying breakpoint. J. Geophys. Res., 87, 492498, https://doi.org/10.1029/JC087iC01p00492.

    • Search Google Scholar
    • Export Citation
  • Synolakis, C. E., 1991: Green’s law and the evolution of solitary waves. Phys. Fluids, 3, 490491, https://doi.org/10.1063/1.858107.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., S. Elgar, B. Raubenheimer, T. H. C. Herbers, and R. T. Guza, 2006: Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone. Geophys. Res. Lett., 33, L05601, https://doi.org/10.1029/2005GL025514.

    • Search Google Scholar
    • Export Citation
  • Thornton, E. B., and R. T. Guza, 1982: Energy saturation and phase speeds measured on a natural beach. J. Geophys. Res., 87, 94999508, https://doi.org/10.1029/JC087iC12p09499.

    • Search Google Scholar
    • Export Citation
  • Torres-Freyermuth, A., and Coauthors, 2012: Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon. Nat. Hazards Earth Syst. Sci., 12, 37653773, https://doi.org/10.5194/nhess-12-3765-2012.

    • Search Google Scholar
    • Export Citation
  • Tucker, M. J., 1950: Surf beats: Sea waves of 1 to 5 min. period. Proc. Roy. Soc., 202, 565573, https://doi.org/10.1098/rspa.1950.0120.

    • Search Google Scholar
    • Export Citation
  • Ursell, F., 1952: Edge waves on a sloping beach. Proc. Roy. Soc., 214, 7997, https://doi.org/10.1098/rspa.1952.0152.

  • Ursell, F., R. G. Dean, and Y. S. Yu, 1960: Forced small-amplitude water waves: A comparison of theory and experiment. J. Fluid Mech., 7, 3352, https://doi.org/10.1017/S0022112060000037.

    • Search Google Scholar
    • Export Citation
  • van Dongeren, A., J. Battjes, T. Janssen, J. van Noorloos, K. Steenhauer, G. Steenbergen, and A. Reniers, 2007: Shoaling and shoreline dissipation of low-frequency waves. J. Geophys. Res., 112, C02011, https://doi.org/10.1029/2006JC003701.

    • Search Google Scholar
    • Export Citation
  • van Dongeren, A., R. Lowe, A. Pomeroy, D. M. Trang, D. Roelvink, G. Symonds, and R. Ranasinghe, 2013: Numerical modeling of low-frequency wave dynamics over a fringing coral reef. Coastal Eng., 73, 178190, https://doi.org/10.1016/j.coastaleng.2012.11.004.

    • Search Google Scholar
    • Export Citation
  • van Rooijen, A., A. Reniers, J. van Thiel de Vries, C. Blenkinsopp, and R. Mccall, 2012: Modelling swash zone sediment transport at Le Truc Vert beach. Proc. 33rd Int. Conf. on Coastal Engineering, Santander, Spain, American Society of Civil Engineers, 1–12, https://doi.org/10.9753/icce.v33.sediment.105.

  • Watson, G., T. C. D. Barnes, and D. H. Peregrine, 1994: The generation of low-frequency waves by a single wave group incident on a beach. 24th Int. Conf. on Coastal Engineering, Kobe, Japan, American Society of Civil Engineers, 776–790, https://research-information.bris.ac.uk/en/publications/the-generation-of-low-frequency-waves-by-a-single-wave-group-inci-2.

  • Zanuttigh, B., and J. W. van der Meer, 2008: Wave reflection from coastal structures in design conditions. Coastal Eng., 55, 771779, https://doi.org/10.1016/j.coastaleng.2008.02.009.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Li, J. Zheng, M. Xie, J. Shi, and G. Wang, 2021: Parametric modelling of nearshore wave reflection. Coastal Eng., 169, 103978, https://doi.org/10.1016/j.coastaleng.2021.103978.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 857 857 12
Full Text Views 188 188 9
PDF Downloads 235 235 10

Free Long-Wave Transformation in the Nearshore Zone through Partial Reflections

Stephanie ContardoaCSIRO Environment, Crawley, Western Australia, Australia
bSchool of Earth Sciences, The University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Stephanie Contardo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2994-8789
,
Ryan J LowecOceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Ryan J Lowe in
Current site
Google Scholar
PubMed
Close
,
Francois DufoisdPacific Community Center for Ocean Science, Pacific Community (SPC), Nouméa, New Caledonia
eIFREMER, DYNECO/DHYSED, Plouzané, France

Search for other papers by Francois Dufois in
Current site
Google Scholar
PubMed
Close
,
Jeff E HansenbSchool of Earth Sciences, The University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Jeff E Hansen in
Current site
Google Scholar
PubMed
Close
,
Mark BuckleyfSt. Petersburg Coastal and Marine Science Center, U.S. Geological Survey, St. Petersburg, Florida

Search for other papers by Mark Buckley in
Current site
Google Scholar
PubMed
Close
, and
Graham SymondsbSchool of Earth Sciences, The University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Graham Symonds in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Long waves play an important role in coastal inundation and shoreline and dune erosion, requiring a detailed understanding of their evolution in nearshore regions and interaction with shorelines. While their generation and dissipation mechanisms are relatively well understood, there are fewer studies describing how reflection processes govern their propagation in the nearshore. We propose a new approach, accounting for partial reflections, which leads to an analytical solution to the free wave linear shallow-water equations at the wave-group scale over general varying bathymetry. The approach, supported by numerical modeling, agrees with the classic Bessel standing solution for a plane sloping beach but extends the solution to arbitrary alongshore uniform bathymetry profiles and decomposes it into incoming and outgoing wave components, which are a combination of successively partially reflected waves lagging each other. The phase lags introduced by partial reflections modify the wave amplitude and explain why Green’s law, which describes the wave growth of free waves with decreasing depth, breaks down in very shallow water. This reveals that the wave amplitude at the shoreline is highly dependent on partial reflections. Consistent with laboratory and field observations, our analytical model predicts a reflection coefficient that increases and is highly correlated with the normalized bed slope (bed slope relative to wave frequency). Our approach shows that partial reflections occurring due to depth variations in the nearshore are responsible for the relationship between the normalized bed slope and the amplitude of long waves in the nearshore, with direct implications for determining long-wave amplitudes at the shoreline and wave runup.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie Contardo, stephanie.contardo@csiro.au

Abstract

Long waves play an important role in coastal inundation and shoreline and dune erosion, requiring a detailed understanding of their evolution in nearshore regions and interaction with shorelines. While their generation and dissipation mechanisms are relatively well understood, there are fewer studies describing how reflection processes govern their propagation in the nearshore. We propose a new approach, accounting for partial reflections, which leads to an analytical solution to the free wave linear shallow-water equations at the wave-group scale over general varying bathymetry. The approach, supported by numerical modeling, agrees with the classic Bessel standing solution for a plane sloping beach but extends the solution to arbitrary alongshore uniform bathymetry profiles and decomposes it into incoming and outgoing wave components, which are a combination of successively partially reflected waves lagging each other. The phase lags introduced by partial reflections modify the wave amplitude and explain why Green’s law, which describes the wave growth of free waves with decreasing depth, breaks down in very shallow water. This reveals that the wave amplitude at the shoreline is highly dependent on partial reflections. Consistent with laboratory and field observations, our analytical model predicts a reflection coefficient that increases and is highly correlated with the normalized bed slope (bed slope relative to wave frequency). Our approach shows that partial reflections occurring due to depth variations in the nearshore are responsible for the relationship between the normalized bed slope and the amplitude of long waves in the nearshore, with direct implications for determining long-wave amplitudes at the shoreline and wave runup.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephanie Contardo, stephanie.contardo@csiro.au
Save