Three Regimes of Internal Gravity Wave–Stable Vortex Interaction Classified by a Nondimensional Parameter δ: Scattering, Wheel-Trapping, and Spiral-Trapping with Vortex Deformation

Kaoru Ito aPan-Okhotsk Research Center, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

Search for other papers by Kaoru Ito in
Current site
Google Scholar
PubMed
Close
and
Tomohiro Nakamura aPan-Okhotsk Research Center, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

Search for other papers by Tomohiro Nakamura in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The internal wave–vortex interaction was investigated for a broad parameter range except near inertial waves, by 1) scaling, 2) numerical experiments, and 3) the estimation of possible occurrences. By scaling, we identified a nondimensional parameter, δ = (V/c)[1/(kR)], where V is the vortex flow speed, R is the radius, c is the incident wave phase speed, and k is the horizontal wavenumber. As δ appears in all terms related to the interaction, it is important in the classification of the wave–vortex interaction. Numerical experiments were conducted on internal waves incident on a stable barotropic vortex with a parameter range of δ = [0.001, 1.7], which is much broader than that used in previous studies (δ ≪ 1). We found new phenomena for δ > 0.15, in addition to previously known scattering for δ ≤ 0.15 (scattering regime). For 0.15 < δ ≤ 0.4, part of the incident internal wave is trapped in a vortex, forming a wheel-like shape maintaining a superinertial frequency (wheel-trapping regime). When δ > 0.4, incident waves are trapped, but with a spiral shape (spiral-trapping regime). Spiral-shaped trapped waves release momentum by wave breaking, which deforms the vortex into a zigzag shape in the vertical direction. Vortex deformation produces vertical shear, which rapidly increases the vertical wavenumber of the incident wave. The distribution of δ in the Pacific Ocean was estimated using a high-resolution (1/30°) ocean general circulation model output. We found the occurrences of all three regimes. The scattering and wheel-trapping regimes are distributed broadly and varied seasonally, thus affecting mixing variability.

Significance Statement

Oceanic internal waves constitute the fundamental forcing of overturning and material circulation, because internal waves eventually break and cause vertical mixing. Interactions between internal waves and vortices affect wave properties and, therefore, mixing. However, as far as we are aware, all previous studies have focused on large weak vortices relative to waves. Here, we investigated such interactions for a much larger parameter space and identified two new regimes, in which vertical mixing is caused by newly found internal wave trapping and vortex deformation processes. We identified a nondimensional parameter that classifies the regimes and estimated their spatiotemporal distribution. These results suggest new energy routes from internal waves to turbulence and are applicable to other types of waves and vortices.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaoru Ito, k-ito@lowtem.hokudai.ac.jp

Abstract

The internal wave–vortex interaction was investigated for a broad parameter range except near inertial waves, by 1) scaling, 2) numerical experiments, and 3) the estimation of possible occurrences. By scaling, we identified a nondimensional parameter, δ = (V/c)[1/(kR)], where V is the vortex flow speed, R is the radius, c is the incident wave phase speed, and k is the horizontal wavenumber. As δ appears in all terms related to the interaction, it is important in the classification of the wave–vortex interaction. Numerical experiments were conducted on internal waves incident on a stable barotropic vortex with a parameter range of δ = [0.001, 1.7], which is much broader than that used in previous studies (δ ≪ 1). We found new phenomena for δ > 0.15, in addition to previously known scattering for δ ≤ 0.15 (scattering regime). For 0.15 < δ ≤ 0.4, part of the incident internal wave is trapped in a vortex, forming a wheel-like shape maintaining a superinertial frequency (wheel-trapping regime). When δ > 0.4, incident waves are trapped, but with a spiral shape (spiral-trapping regime). Spiral-shaped trapped waves release momentum by wave breaking, which deforms the vortex into a zigzag shape in the vertical direction. Vortex deformation produces vertical shear, which rapidly increases the vertical wavenumber of the incident wave. The distribution of δ in the Pacific Ocean was estimated using a high-resolution (1/30°) ocean general circulation model output. We found the occurrences of all three regimes. The scattering and wheel-trapping regimes are distributed broadly and varied seasonally, thus affecting mixing variability.

Significance Statement

Oceanic internal waves constitute the fundamental forcing of overturning and material circulation, because internal waves eventually break and cause vertical mixing. Interactions between internal waves and vortices affect wave properties and, therefore, mixing. However, as far as we are aware, all previous studies have focused on large weak vortices relative to waves. Here, we investigated such interactions for a much larger parameter space and identified two new regimes, in which vertical mixing is caused by newly found internal wave trapping and vortex deformation processes. We identified a nondimensional parameter that classifies the regimes and estimated their spatiotemporal distribution. These results suggest new energy routes from internal waves to turbulence and are applicable to other types of waves and vortices.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaoru Ito, k-ito@lowtem.hokudai.ac.jp
Save
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft, 2015: Indirect evidence for substantial damping of low-mode internal tides in the open ocean. J. Geophys. Res. Oceans, 120, 60576071, https://doi.org/10.1002/2015JC010998.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., A. J. Wallcraft, and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175187, https://doi.org/10.1016/j.ocemod.2010.01.007.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., J. G. Richman, J. F. Shriver, P. G. Timko, E. J. Metzger, and A. J. Wallcraft, 2012: Global modeling of internal tides within an eddying ocean general circulation model. Oceanography, 25, 2029, https://doi.org/10.5670/oceanog.2012.38.

    • Search Google Scholar
    • Export Citation
  • Badulin, S. I., and V. I. Shrira, 1993: On the irreversibility of internal-wave dynamics due to wave trapping by mean flow inhomogeneities. Part 1. Local analysis. J. Fluid Mech., 251, 2153, https://doi.org/10.1017/S0022112093003325.

    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52, 44104428, https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brunner-Suzuki, A.-M. E. G., M. A. Sundermeyer, and M.-P. Lelong, 2012: Vortex stability in a large-scale internal wave shear. J. Phys. Oceanogr., 42, 16681683, https://doi.org/10.1175/JPO-D-11-0137.1.

    • Search Google Scholar
    • Export Citation
  • Brunner-Suzuki, A.-M. E. G., M. A. Sundermeyer, and M.-P. Lelong, 2014: Upscale energy transfer by the vortical mode and internal waves. J. Phys. Oceanogr., 44, 24462469, https://doi.org/10.1175/JPO-D-12-0149.1.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2014: Waves and Mean Flows. 2nd ed. Cambridge University Press, 374 pp.

  • Bühler, O., and M. E. McIntyre, 1998: On non-dissipative wave-mean interactions in the atmosphere or oceans. J. Fluid Mech., 354, 301343, https://doi.org/10.1017/S002211209700774X.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. E. McIntyre, 2005: Wave capture and wave-vortex duality. J. Fluid Mech., 534, 6795, https://doi.org/10.1017/S0022112005004374.

    • Search Google Scholar
    • Export Citation
  • Calil, P. H. R., K. J. Richards, Y. Jia, and R. R. Bidigare, 2008: Eddy activity in the lee of the Hawaiian Islands. Deep-Sea Res. II, 55, 11791194, https://doi.org/10.1016/j.dsr2.2008.01.008.

    • Search Google Scholar
    • Export Citation
  • Chavanne, C., P. Flament, D. Luther, and K.-W. Gurgel, 2010: The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part II: Interactions with mesoscale currents. J. Phys. Oceanogr., 40, 11801200, https://doi.org/10.1175/2010JPO4223.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Danioux, E., and J. Vanneste, 2016: Near-inertial-wave scattering by random flows. Phys. Rev. Fluids, 1, 033701, https://doi.org/10.1103/PhysRevFluids.1.033701.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and Coauthors, 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and P. D. Killworth, 1995: On the stability of oceanic rings. J. Phys. Oceanogr., 25, 14671487, https://doi.org/10.1175/1520-0485(1995)025<1467:OTSOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and K. C. Yeh, 1988: Resonant and nonresonant wave-wave interactions in an isothermal atmosphere. J. Geophys. Res., 93, 37293744, https://doi.org/10.1029/JD093iD04p03729.

    • Search Google Scholar
    • Export Citation
  • Dong, W., O. Bühler, and K. S. Smith, 2020: Frequency diffusion of waves by unsteady flows. J. Fluid Mech., 905, R3, https://doi.org/10.1017/jfm.2020.837.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., Y.-T. Lin, M. Buijsman, and A. E. Newhall, 2018: Internal tidal modal ray refraction and energy ducting in baroclinic Gulf Stream currents. J. Phys. Oceanogr., 48, 19691993, https://doi.org/10.1175/JPO-D-18-0031.1.

    • Search Google Scholar
    • Export Citation
  • Dunphy, M., and K. G. Lamb, 2014: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans, 119, 523536, https://doi.org/10.1002/2013JC009293.

    • Search Google Scholar
    • Export Citation
  • Dunphy, M., A. L. Ponte, P. Klein, and S. Le Gentil, 2017: Low-mode internal tide propagation in a turbulent eddy field. J. Phys. Oceanogr., 47, 649665, https://doi.org/10.1175/JPO-D-16-0099.1.

    • Search Google Scholar
    • Export Citation
  • Farge, M., and R. Sadourny, 1989: Wave-vortex dynamics in rotating shallow water. J. Fluid Mech., 206, 433462, https://doi.org/10.1017/S0022112089002351.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and R. Ferrari, 2008: Observing oceanic submesoscale processes from space. Eos, Trans. Amer. Geophys. Union, 89, 488, https://doi.org/10.1029/2008EO480003.

    • Search Google Scholar
    • Export Citation
  • Godoy-Diana, R., J.-M. Chomaz, and C. Donnadieu, 2006: Internal gravity waves in a dipolar wind: A wave-vortex interaction experiment in a stratified fluid. J. Fluid Mech., 548, 281308, https://doi.org/10.1017/S0022112005007536.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Search Google Scholar
    • Export Citation
  • Huang, X., Z. Wang, Z. Zhang, Y. Yang, C. Zhou, Q. Yang, W. Zhao, and J. Tian, 2018: Role of mesoscale eddies in modulating the semidiurnal internal tide: Observation results in the northern South China Sea. J. Phys. Oceanogr., 48, 17491770, https://doi.org/10.1175/JPO-D-17-0209.1.

    • Search Google Scholar
    • Export Citation
  • Jones, W. L., 1969: Ray tracing for internal gravity waves. J. Geophys. Res., 74, 20282033, https://doi.org/10.1029/JB074i008p02028.

  • Kafiabad, H. A., M. A. C. Savva, and J. Vanneste, 2019: Diffusion of inertia-gravity waves by geostrophic turbulence. J. Fluid Mech., 869, R7, https://doi.org/10.1017/jfm.2019.300.

    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., J. Vanneste, and W. R. Young, 2021: Interaction of near-inertial waves with an anticyclonic vortex. J. Phys. Oceanogr., 51, 20352048, https://doi.org/10.1175/JPO-D-20-0257.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., P. F. J. Lermusiaux, T. F. Duda, and P. J. Haley Jr., 2016: A coupled-mode shallow-water model for tidal analysis: Internal tide reflection and refraction by the Gulf Stream. J. Phys. Oceanogr., 46, 36613679, https://doi.org/10.1175/JPO-D-16-0018.1.

    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., B. S. Powell, and G. S. Carter, 2014: The impact of subtidal circulation on internal-tide-induced mixing in the Philippine Sea. J. Phys. Oceanogr., 44, 32093224, https://doi.org/10.1175/JPO-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Klein, P., and S. L. Smith, 2001: Horizontal dispersion of near-inertial oscillations in a turbulent mesoscale eddy field. J. Mar. Res., 59, 697723, https://doi.org/10.1357/002224001762674908.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, https://doi.org/10.1175/2007JPO3728.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and E. Boss, 1998: A model for vortex-trapped internal waves. J. Phys. Oceanogr., 28, 21042115, https://doi.org/10.1175/1520-0485(1998)028<2104:AMFVTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, A. C., and L. M. Polvani, 1999: Wave-vortex interaction in rotating shallow water. Part 1. One space dimension. J. Fluid Mech., 394, 127, https://doi.org/10.1017/S0022112099005534.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1980: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci., 37, 958968, https://doi.org/10.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., and J. J. Riley, 1991: Internal wave—Vortical mode interactions in strongly stratified flows. J. Fluid Mech., 232, 119, https://doi.org/10.1017/S0022112091003609.

    • Search Google Scholar
    • Export Citation
  • Lelong, M.-P., Y. Cuypers, and P. Bouruet-Aubertot, 2020: Near-inertial energy propagation inside a Mediterranean anticyclonic eddy. J. Phys. Oceanogr., 50, 22712288, https://doi.org/10.1175/JPO-D-19-0211.1.

    • Search Google Scholar
    • Export Citation
  • Liu, L., L. Ran, and S. Gao, 2019: A three-dimensional wave activity flux of inertia–gravity waves and its application to a rainstorm event. Adv. Atmos. Sci., 36, 206218, https://doi.org/10.1007/s00376-018-8018-5.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave-driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Search Google Scholar
    • Export Citation
  • Matsumura, Y., and H. Hasumi, 2008: A non-hydrostatic ocean model with a scalable multigrid Poisson solver. Ocean Modell., 24, 1528, https://doi.org/10.1016/j.ocemod.2008.05.001.

    • Search Google Scholar
    • Export Citation
  • Moulin, F. Y., and J. B. Flór, 2005: Experimental study on wave breaking and mixing properties in the periphery of an intense vortex. Dyn. Atmos. Oceans, 40, 115130, https://doi.org/10.1016/j.dynatmoce.2004.10.007.

    • Search Google Scholar
    • Export Citation
  • Müller, P., and N. Xu, 1992: Scattering of oceanic internal gravity waves off random bottom topography. J. Phys. Oceanogr., 22, 474488, https://doi.org/10.1175/1520-0485(1992)022<0474:SOOIGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., and T. Awaji, 2009: Scattering of internal waves with frequency change over rough topography. J. Phys. Oceanogr., 39, 15741594, https://doi.org/10.1175/2008JPO3795.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., Y. Isoda, H. Mitsudera, S. Takagi, and M. Nagasawa, 2010: Breaking of unsteady lee waves generated by diurnal tides. Geophys. Res. Lett., 37, L04602, https://doi.org/10.1029/2009GL041456.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., J. P. Matthews, T. Awaji, and H. Mitsudera, 2012: Submesoscale eddies near the Kuril straits: Asymmetric generation of clockwise and counterclockwise eddies by barotropic tidal flow. J. Geophys. Res., 117, C12014, https://doi.org/10.1029/2011JC007754.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr., 17, 445454, https://doi.org/10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2008: Mesoscale eddy-internal wave coupling. Part I: Symmetry, wave capture, and results from the mid-ocean dynamics experiment. J. Phys. Oceanogr., 38, 25562574, https://doi.org/10.1175/2008JPO3666.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy-internal wave coupling. Part II: Energetics and results from polymode. J. Phys. Oceanogr., 40, 789801, https://doi.org/10.1175/2009JPO4039.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., and P. Klein, 2015: Incoherent signature of internal tides on sea level in idealized numerical simulations. Geophys. Res. Lett., 42, 15201526, https://doi.org/10.1002/2014GL062583.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Baroclinic energy flux at the Hawaiian Ridge: Observations from the R/P FLIP. J. Phys. Oceanogr., 36, 11041122, https://doi.org/10.1175/JPO2882.1.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, https://doi.org/10.1016/S0079-6611(97)00025-6.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from Topex/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 12591262, https://doi.org/10.1029/2000GL012447.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett., 38, L17609, https://doi.org/10.1029/2011GL048617.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, https://doi.org/10.1126/science.1085837.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 2016: Variational treatment of inertia-gravity waves interacting with a quasi-geostrophic mean flow. J. Fluid Mech., 809, 502529, https://doi.org/10.1017/jfm.2016.693.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., and P. Klein, 2012: SSH wavenumber spectra in the North Pacific from a high-resolution: Realistic simulation. J. Phys. Oceanogr., 42, 12331241, https://doi.org/10.1175/JPO-D-11-0180.1.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, Y. Sasai, and B. Qiu, 2017: Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean. Ocean Dyn., 67, 11951216, https://doi.org/10.1007/s10236-017-1083-y.

    • Search Google Scholar
    • Export Citation
  • Savva, M. A. C., and J. Vanneste, 2018: Scattering of internal tides by barotropic quasigeostrophic flows. J. Fluid Mech., 856, 504530, https://doi.org/10.1017/jfm.2018.694.

    • Search Google Scholar
    • Export Citation
  • Savva, M. A. C., H. A. Kafiabad, and J. Vanneste, 2021: Inertia-gravity-wave scattering by three-dimensional geostrophic turbulence. J. Fluid Mech., 916, A6, https://doi.org/10.1017/jfm.2021.205.

    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., J. G. Richman, and B. K. Arbic, 2014: How stationary are the internal tides in a high-resolution global ocean circulation model? J. Geophys. Res. Oceans, 119, 27692787, https://doi.org/10.1002/2013JC009423.

    • Search Google Scholar
    • Export Citation
  • Smith, S. G. L., 1999: Near-inertial oscillations of a barotropic vortex: Trapped modes and time evolution. J. Phys. Oceanogr., 29, 747761, https://doi.org/10.1175/1520-0485(1999)029<0747:NIOOAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Uematsu, A., R. Nakamura, Y. Nakajima, and Y. Yajima, 2013: X-band interferometric SAR sensor for the Japanese altimetry mission, COMPIRA. 2013 IEEE Int. Geoscience and Remote Sensing Symp., Melbourne, Victoria, Australia, Institute of Electrical and Electronics Engineers, 2943–2946, https://doi.org/10.1109/IGARSS.2013.6723442.

  • Wagner, G. L., and W. R. Young, 2015: Available potential vorticity and wave-averaged quasi-geostrophic flow. J. Fluid Mech., 785, 401424, https://doi.org/10.1017/jfm.2015.626.

    • Search Google Scholar
    • Export Citation
  • Wagner, G. L., G. Ferrando, and W. R. Young, 2017: An asymptotic model for the propagation of oceanic internal tides through quasi-geostrophic flow. J. Fluid Mech., 828, 779811, https://doi.org/10.1017/jfm.2017.509.

    • Search Google Scholar
    • Export Citation
  • Ward, M. L., and W. K. Dewar, 2010: Scattering of gravity waves by potential vorticity in a shallow-water fluid. J. Fluid Mech., 663, 478506, https://doi.org/10.1017/S0022112010003721.

    • Search Google Scholar
    • Export Citation
  • Warn, B. T., 1986: Statistical mechanical equilibria of the shallow water equations. Tellus, 38A (1), 111, https://doi.org/10.3402/tellusa.v38i1.11693.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, https://doi.org/10.1016/0167-2789(91)90088-Q.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., 2021: Best practices for comparing ocean turbulence measurements across spatiotemporal scales. J. Atmos. Oceanic Technol., 38, 837841, https://doi.org/10.1175/JTECH-D-20-0175.1.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Search Google Scholar
    • Export Citation
  • Xie, J.-H., and J. Vanneste, 2015: A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech., 774, 143169, https://doi.org/10.1017/jfm.2015.251.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., and M. Ben-Jelloul, 1997: Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735766, https://doi.org/10.1357/0022240973224283.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and G. D. Egbert, 2014: Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 44, 538557, https://doi.org/10.1175/JPO-D-12-0238.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 556 556 26
Full Text Views 198 198 3
PDF Downloads 267 267 4