Seasonal Features and Potential Mechanisms of Submesoscale Processes in the Southern Bay of Bengal during 2011/12

Xuhua Cheng aCollege of Oceanography, Hohai University, Nanjing, China
bSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Xuhua Cheng in
Current site
Google Scholar
PubMed
Close
,
Lanman Li aCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Lanman Li in
Current site
Google Scholar
PubMed
Close
,
Zhiyou Jing cState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Zhiyou Jing in
Current site
Google Scholar
PubMed
Close
,
Haijin Cao aCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Haijin Cao in
Current site
Google Scholar
PubMed
Close
,
Guidi Zhou aCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Guidi Zhou in
Current site
Google Scholar
PubMed
Close
,
Wei Duan aCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Wei Duan in
Current site
Google Scholar
PubMed
Close
, and
Yifei Zhou aCollege of Oceanography, Hohai University, Nanjing, China

Search for other papers by Yifei Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the seasonal features and generation mechanisms of submesoscale processes (SMPs) in the southern Bay of Bengal (BoB) during 2011/12, based on the output of a high-resolution model, LLC4320 (latitude–longitude–polar cap). The results show that the southern BoB exhibits the most energetic SMPs, with significant seasonal variations. The SMPs are more active during the summer and winter monsoon periods. During the monsoon periods, the sharpening horizontal buoyancy gradients associated with strong straining effects favor the frontogenesis and mixed layer instability (MLI), which are responsible for the SMPs generation. The symmetric instability (SI) scale is about 3–10 km in the southern BoB, which can be partially resolved by LLC4320. The SI is more active during summer and winter, with a proportion of 40%–80% during the study period when the necessary conditions for SI are satisfied. Energetics analysis suggests that the energy source of SMPs is mainly from the local large-scale and mesoscale processes. Baroclinic instability at submesoscales plays a significant role, further confirming the importance of frontogenesis and MLI. Barotropic instability also has considerable contribution to the submesoscale kinetic energy, especially during summer.

Significance Statement

Submesoscale processes (SMPs) are ubiquitous in the Bay of Bengal (BoB). Affected by the seasonally reversing monsoon, abundant rainfall and runoff, and equatorial remote forcing, the upper circulation in the BoB is complex, featuring active mesoscale eddies and rich submesoscale phenomena, making the BoB a “natural test ground” for submesoscale studies. It is found in this work that characteristics of SMPs in the BoB are quite different from other regions. In the southern bay, SMPs are most active during the summer and winter monsoons due to the frontogenesis, enhanced mixed layer instability (MLI), and symmetric instability. These findings could deepen our understanding on multiscale dynamic processes and energy cascade in the BoB and have implications for the study of marine ecology and biogeochemical processes.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuhua Cheng, xuhuacheng@hhu.edu.cn

Abstract

This study investigates the seasonal features and generation mechanisms of submesoscale processes (SMPs) in the southern Bay of Bengal (BoB) during 2011/12, based on the output of a high-resolution model, LLC4320 (latitude–longitude–polar cap). The results show that the southern BoB exhibits the most energetic SMPs, with significant seasonal variations. The SMPs are more active during the summer and winter monsoon periods. During the monsoon periods, the sharpening horizontal buoyancy gradients associated with strong straining effects favor the frontogenesis and mixed layer instability (MLI), which are responsible for the SMPs generation. The symmetric instability (SI) scale is about 3–10 km in the southern BoB, which can be partially resolved by LLC4320. The SI is more active during summer and winter, with a proportion of 40%–80% during the study period when the necessary conditions for SI are satisfied. Energetics analysis suggests that the energy source of SMPs is mainly from the local large-scale and mesoscale processes. Baroclinic instability at submesoscales plays a significant role, further confirming the importance of frontogenesis and MLI. Barotropic instability also has considerable contribution to the submesoscale kinetic energy, especially during summer.

Significance Statement

Submesoscale processes (SMPs) are ubiquitous in the Bay of Bengal (BoB). Affected by the seasonally reversing monsoon, abundant rainfall and runoff, and equatorial remote forcing, the upper circulation in the BoB is complex, featuring active mesoscale eddies and rich submesoscale phenomena, making the BoB a “natural test ground” for submesoscale studies. It is found in this work that characteristics of SMPs in the BoB are quite different from other regions. In the southern bay, SMPs are most active during the summer and winter monsoons due to the frontogenesis, enhanced mixed layer instability (MLI), and symmetric instability. These findings could deepen our understanding on multiscale dynamic processes and energy cascade in the BoB and have implications for the study of marine ecology and biogeochemical processes.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xuhua Cheng, xuhuacheng@hhu.edu.cn
Save
  • Bachman, S. D., and J. R. Taylor, 2014: Modelling of partially-resolved oceanic symmetric instability. Ocean Modell., 82, 1527, https://doi.org/10.1016/j.ocemod.2014.07.006.

    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, J. R. Taylor, and L. N. Thomas, 2017: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Modell., 109, 7295, https://doi.org/10.1016/j.ocemod.2016.12.003.

    • Search Google Scholar
    • Export Citation
  • Barkan, R., J. C. McWilliams, A. F. Shchepetkin, M. J. Molemaker, L. Renault, A. Bracco, and J. Choi, 2017: Submesoscale dynamics in the Northern Gulf of Mexico. Part I: Regional and seasonal characterization and the role of river outflow. J. Phys. Oceanogr., 47, 23252346, https://doi.org/10.1175/JPO-D-17-0035.1.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., and Coauthors, 2016: Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys. Res. Lett., 43, 21182126, https://doi.org/10.1002/2016GL068009.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Search Google Scholar
    • Export Citation
  • Callies, J., G. R. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Search Google Scholar
    • Export Citation
  • Cao, H., and Z. Jing, 2022: Submesoscale ageostrophic motions within and below the mixed layer of the northwestern Pacific Ocean. J. Geophys. Res. Oceans, 127, e2021JC017812, https://doi.org/10.1029/2021JC017812.

    • Search Google Scholar
    • Export Citation
  • Cao, H., B. Fox-Kemper, and Z. Jing, 2021: Submesoscale eddies in the upper-ocean of the Kuroshio Extension from high-resolution simulation: Energy budget. J. Phys. Oceanogr., 51, 21812201, https://doi.org/10.1175/JPO-D-20-0267.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., E. J. Campos, and A. M. Paiva, 2008a: Submesoscale activity over the Argentinian shelf. Geophys. Res. Lett., 35, L15605, https://doi.org/10.1029/2008GL034736.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008c: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008d: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., D. Wang, and Y. Hou, 2012: The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res., 47, 178185, https://doi.org/10.1016/j.csr.2012.07.011.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., S.-P. Xie, J. P. McCreary, Y. Qi, and Y. Du, 2013: Intraseasonal variability of sea surface height in the Bay of Bengal. J. Geophys. Res. Oceans, 118, 816830, https://doi.org/10.1002/jgrc.20075.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., J. P. McCreary, B. Qiu, Y. Qi, and Y. Du, 2017: Intraseasonal-to-semiannual variability of sea-surface height in the eastern, equatorial Indian Ocean and southern Bay of Bengal. J. Geophys. Res. Oceans, 122, 40514067, https://doi.org/10.1002/2016JC012662.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., J. P. McCreary, B. Qiu, Y. Qi, Y. Du, and X. Chen, 2018: Dynamics of eddy generation in the central Bay of Bengal. J. Geophys. Res. Oceans, 123, 68616875, https://doi.org/10.1029/2018JC014100.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., J. C. McWilliams, and M. J. Molemaker, 2015: Centrifugal instability and mixing in the California Undercurrent. J. Phys. Oceanogr., 45, 12241241, https://doi.org/10.1175/JPO-D-13-0269.1.

    • Search Google Scholar
    • Export Citation
  • Dong, J., and Y. Zhong, 2018: The spatiotemporal features of submesoscale processes in the northeastern South China Sea. Acta Oceanol. Sin., 37, 818, https://doi.org/10.1007/s13131-018-1277-2.

    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020a: The seasonality of submesoscale energy production, content, and cascade. Geophys. Res. Lett., 47, e2020GL087388, https://doi.org/10.1029/2020GL087388.

    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020b: The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr., 50, 26492667, https://doi.org/10.1175/JPO-D-20-0043.1.

    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2021: The scale and activity of symmetric instability estimated from a global submesoscale-permitting ocean model. J. Phys. Oceanogr., 51, 16551670, https://doi.org/10.1175/JPO-D-20-0159.1.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Posedon and ERS-1 and -2. J. Geophys. Res., 105, 19 47719 498, https://doi.org/10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Durand, F., D. Shankar, F. Birol, and S. S. C. Shenoi, 2009: Spatiotemporal structure of the East India Coastal Current from satellite altimetry. J. Geophys. Res., 114, C02013, https://doi.org/10.1029/2008JC004807.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and R. Ferrari, 2008: Parameterization of mixed layer eddies. Part II: Prognosis and impact. J. Phys. Oceanogr., 38, 11661179, https://doi.org/10.1175/2007JPO3788.1.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Search Google Scholar
    • Export Citation
  • Hosegood, P. J., M. C. Gregg, and M. H. Alford, 2008: Restratification of the surface mixed layer with submesoscale lateral density gradients: Diagnosing the importance of the horizontal dimension. J. Phys. Oceanogr., 38, 24382460, https://doi.org/10.1175/2008JPO3843.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, https://doi.org/10.1002/qj.49710042520.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech., 14, 131151, https://doi.org/10.1146/annurev.fl.14.010182.001023.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. R., J. C. B. da Silva, and G. Jeans, 2012: The generation of nonlinear internal waves. Oceanography, 25, 108123, https://doi.org/10.5670/oceanog.2012.46.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., 2001: Arabian Sea and Bay of Bengal exchange of salt and tracers in an ocean model. Geophys. Res. Lett., 28, 39673970, https://doi.org/10.1029/2001GL013422.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., H. W. Wijesekera, E. S. Nyadjro, P. G. Thoppil, J. F. Shriver, K. K. Sandeep, and V. Pant, 2016: Modeling salinity exchanges between the equatorial Indian Ocean and the Bay of Bengal. Oceanography, 29, 92101, https://doi.org/10.5670/oceanog.2016.42.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., I. Shulman, H. W. Wijesekera, S. Anderson, and S. Ladner, 2018: Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal. Ocean Dyn., 68, 391410, https://doi.org/10.1007/s10236-018-1136-x.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., B. Fox-Kemper, H. Cao, R. Zheng, and Y. Du, 2021: Submesoscale fronts and their dynamical processes associated with symmetric instability in the northwest Pacific subtropical ocean. J. Phys. Oceanogr., 51, 83100, https://doi.org/10.1175/JPO-D-20-0076.1.

    • Search Google Scholar
    • Export Citation
  • Jithin, A. K., M. P. Subeesh, P. A. Francis, and S. S. V. S. Ramakrishna, 2020: Intensification of tidally generated internal waves in the north-central Bay of Bengal. Sci. Rep., 10, 6059, https://doi.org/10.1038/s41598-020-62679-4.

    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, https://doi.org/10.1146/annurev.marine.010908.163704.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, and A.-M. Treguier, 2001: Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535565, https://doi.org/10.1357/002224001762842181.

    • Search Google Scholar
    • Export Citation
  • Li, L., X. Cheng, Z. Jing, H. Cao, and T. Feng, 2022: Submesoscale motions and their seasonality in the northern Bay of Bengal. Acta Oceanol. Sin., 41 (4), 113, https://doi.org/10.1007/s13131-021-1847-6.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2016: Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J. Atmos. Sci., 73, 44394468. https://doi.org/10.1175/JAS-D-16-0131.1

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. R. Robinson, 2005: Localized multiscale energy and vorticity analysis: I. Fundamentals. Dyn. Atmos. Oceans, 38, 195230. https://doi.org/10.1016/j.dynatmoce.2004.12.004

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and D. G. M. Anderson, 2007: Multiscale window transform. Multiscale Model. Simul., 6, 437467. https://doi.org/10.1137/06066895X

    • Search Google Scholar
    • Export Citation
  • Lin, H., Z. Liu, J. Hu, D. Menemenlis, and Y. Huang, 2020: Characterizing meso- to submesoscale features in the South China Sea. Prog. Oceanogr., 188, 102420, https://doi.org/10.1016/j.pocean.2020.102420.

    • Search Google Scholar
    • Export Citation
  • Luo, H., A. Bracco, Y. Cardona, and J. C. McWilliams, 2016: Submesoscale circulation in the northern Gulf of Mexico: Surface processes and the impact of the freshwater river input. Ocean Modell., 101, 6882, https://doi.org/10.1016/j.ocemod.2016.03.003.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2016: The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci., 8, 161184, https://doi.org/10.1146/annurev-marine-010814-015912.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., A. Tandon, and R. Ferrari, 2010: Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res., 115, C03017, https://doi.org/10.1029/2008JC005203.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • McWilliams, J. C., M. J. Molemaker, and E. I. Olafsdottir, 2009: Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr., 39, 31113129, https://doi.org/10.1175/2009JPO4186.1.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., and Coauthors, 2008: ECCO2: High resolution global ocean and sea ices data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Ramonville-Saint-Agne, France, 13–21.

  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Search Google Scholar
    • Export Citation
  • Mohanty, S., A. D. Rao, and G. Latha, 2018: Energetics of semidiurnal internal tides in the Andaman Sea. J. Geophys. Res. Oceans, 123, 62246240, https://doi.org/10.1029/2018JC013852.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Mukherjee, A., and Coauthors, 2014: Observed seasonal and intraseasonal variability of the East India Coastal Current on the continental slope. J. Earth Syst. Sci., 123, 11971232, https://doi.org/10.1007/s12040-014-0471-7.

    • Search Google Scholar
    • Export Citation
  • Narvekar, J., and S. P. Kumar, 2014: Mixed layer variability and chlorophyll a biomass in the Bay of Bengal. Biogeosciences, 11, 38193843, https://doi.org/10.5194/bg-11-3819-2014.

    • Search Google Scholar
    • Export Citation
  • Parekh, A., J. S. Chowdary, O. Sayantani, T. S. Fousiya, and C. Gnanaseelan, 2015: Tropical Indian Ocean surface salinity bias in climate forecasting system coupled models and the role of upper ocean processes. Climate Dyn., 46, 24032422, https://doi.org/10.1007/s00382-015-2709-8.

    • Search Google Scholar
    • Export Citation
  • Peng, J.-P., P. Holtermann, and L. Umlauf, 2020: Frontal instability and energy dissipation in a submesoscale upwelling filament. J. Phys. Oceanogr., 50, 20172035, https://doi.org/10.1175/JPO-D-19-0270.1.

    • Search Google Scholar
    • Export Citation
  • Pham, H. T., and S. Sarkar, 2019: The role of turbulence in strong submesoscale fronts of the Bay of Bengal. Deep-Sea Res. II, 168, 104644, https://doi.org/10.1016/j.dsr2.2019.104644.

    • Search Google Scholar
    • Export Citation
  • Pirro, A., H. J. S. Fernando, H. W. Wijesekera, T. G. Jensen, L. R. Centurioni, and S. U. P. Jinadasa, 2020: Eddies and currents in the Bay of Bengal during summer monsoons. Deep-Sea Res. II, 172, 104728, https://doi.org/10.1016/j.dsr2.2019.104728.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Sasaki, and Y. Sasai, 2014: Seasonal mesoscale and submesoscale eddy variability along the North Pacific subtropical countercurrent. J. Phys. Oceanogr., 44, 30793098, https://doi.org/10.1175/JPO-D-14-0071.1.

    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., and Coauthors, 2018: Submesoscale processes at shallow, salinity fronts in the Bay of Bengal: Observations during the winter monsoon. J. Phys. Oceanogr., 48, 479509, https://doi.org/10.1175/JPO-D-16-0283.1.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., S. T. Gille, T. K. Chereskin, and D. Menemenlis, 2016: Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett., 43, 11 30411 311, https://doi.org/10.1002/2016GL071349.

    • Search Google Scholar
    • Export Citation
  • Sarkar, S., H. T. Pham, S. Ramachandran, J. D. Nash, A. Tandon, J. Buckley, A. A. Lotliker, and M. M. Omand, 2016: The interplay between submesoscale instabilities and turbulence in the surface layer of the Bay of Bengal. Oceanography, 29, 146157, https://doi.org/10.5670/oceanog.2016.47.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, Y. Sasai, and B. Qiu, 2017: Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean. Ocean Dyn., 67, 11951216, https://doi.org/10.1007/s10236-017-1083-y.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., G. N. Bharath Raj, M. Ravichandran, J. Sree Lekha, and F. Papa, 2016: Near-surface salinity and stratification in the North Bay of Bengal from moored observations. Geophys. Res. Lett., 43, 44484456, https://doi.org/10.1002/2016GL068339.

    • Search Google Scholar
    • Export Citation
  • Sree Lekha, J., J. M. Buckley, A. Tandon, and D. Sengupta, 2018: Subseasonal dispersal of freshwater in the northern Bay of Bengal in the 2013 summer monsoon season. J. Geophys. Res. Oceans, 123, 63306348, https://doi.org/10.1029/2018JC014181.

    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Search Google Scholar
    • Export Citation
  • Suresh, I., J. Vialard, M. Lengaigne, W. Han, J. McCreary, F. Durand, and P. M. Muraleedharan, 2013: Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide. Geophys. Res. Lett., 40, 57405744, https://doi.org/10.1002/2013GL058312.

    • Search Google Scholar
    • Export Citation
  • Thadathil, P., P. M. Muraleedharan, R. R. Rao, Y. K. Somayajulu, G. V. Reddy, and C. Revichandran, 2007: Observed seasonal variability of barrier layer in the Bay of Bengal. J. Geophys. Res., 112, C02009, https://doi.org/10.1029/2006JC003651.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., S. S. C. Shenoi, J. P. McCreary, D. Shankar, F. Durand, V. Fernando, and S. R. Shetye, 2009: Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation. Geophys. Res. Lett., 36, L14606, https://doi.org/10.1029/2009GL038450.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Z. Jing, H. Liu, and L. Wu, 2018: Spatial and seasonal variations of submesoscale eddies in the eastern tropical Pacific Ocean. J. Phys. Oceanogr., 48, 101116, https://doi.org/10.1175/JPO-D-17-0070.1.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and Coauthors, 2015: Southern Bay of Bengal currents and salinity intrusions during the northeast monsoon. J. Geophys. Res. Oceans, 120, 68976913, https://doi.org/10.1002/2015JC010744.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, X. Liang, J. Dong, and J. Tian, 2017: Elevated mixing in the periphery of mesoscale eddies in the South China Sea. J. Phys. Oceanogr., 47, 895907, https://doi.org/10.1175/JPO-D-16-0256.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., R. H. Weisberg, Y. Liu, and X. S. Liang, 2020: Instabilities and multiscale interactions underlying the loop current eddy shedding in the Gulf of Mexico. J. Phys. Oceanogr., 50, 12891317, https://doi.org/10.1175/JPO-D-19-0202.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., J. C. McWilliams, X. S. Liang, H. Zhang, R. H. Weisberg, Y. Liu, and D. Menemenlis, 2021: Spatial and temporal characteristics of the submesoscale energetics in the Gulf of Mexico. J. Phys. Oceanogr., 51, 475489, https://doi.org/10.1175/JPO-D-20-0247.1

    • Search Google Scholar
    • Export Citation
  • Yu, L., J. J. Obrien, and J. Yang, 1991: On the remote forcing of the circulation in the Bay of Bengal. J. Geophys. Res., 96, 20 44920 454, https://doi.org/10.1029/91JC02424.

    • Search Google Scholar
    • Export Citation
  • Yu, X., A. C. Naveira Garabato, A. P. Martin, C. E. Buckingham, L. Brannigan, and Z. Su, 2019: An annual cycle of submesoscale vertical flow and restratification in the upper ocean. J. Phys. Oceanogr., 49, 14391461, https://doi.org/10.1175/JPO-D-18-0253.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Y. Zhang, B. Qiu, H. Sasaki, Z. Sun, X. Zhang, W. Zhao, and J. Tian, 2020: Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations. J. Geophys. Res. Oceans, 125, e2019JC015404, https://doi.org/10.1029/2019JC015404.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 761 761 86
Full Text Views 198 198 8
PDF Downloads 295 295 15