Comparing the Contributions of Temperature and Salinity Changes to the AMOC Decline at 26.5°N

Wenbo Lu aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bSanya Oceanographic Institution, Ocean University of China, Sanya, China

Search for other papers by Wenbo Lu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4758-8385
,
Chun Zhou aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bSanya Oceanographic Institution, Ocean University of China, Sanya, China
cQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Chun Zhou in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3989-5943
,
Wei Zhao aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bSanya Oceanographic Institution, Ocean University of China, Sanya, China
cQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Wei Zhao in
Current site
Google Scholar
PubMed
Close
,
Cunjie Zhang cQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Cunjie Zhang in
Current site
Google Scholar
PubMed
Close
,
Tao Geng aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bSanya Oceanographic Institution, Ocean University of China, Sanya, China

Search for other papers by Tao Geng in
Current site
Google Scholar
PubMed
Close
, and
Xin Xiao aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bSanya Oceanographic Institution, Ocean University of China, Sanya, China

Search for other papers by Xin Xiao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

At 26.5°N in the North Atlantic, a continuous transbasin observational array has been established since 2004 to detect the strength of the Atlantic meridional overturning circulation. The observational record shows that the subtropical Atlantic meridional overturning circulation has weakened by 2.5 ± 1.5 Sv (as mean ± 95% interval; 1 Sv ≡ 106 m3 s−1) since 2008 compared to the initial 4-yr average. Strengthening of the upper southward geostrophic transport (with a 2.6 ± 1.6 Sv southward increase) derived from thermal wind dominates this Atlantic meridional overturning circulation decline. We decompose the geostrophic transport into its temperature and salinity components to compare their contributions to the transport variability. The contributions of temperature and salinity components to the southward geostrophic transport strengthening are 1.0 ± 2.5 and 1.6 ± 1.3 Sv, respectively. The variation of salinity component is significant at the 95% confidence level, while the temperature component’s variation is not. This result highlights the vital role that salinity plays in the subtropical Atlantic meridional overturning circulation variability, which has been overlooked in previous studies. We further analyze the geostrophic transport variations and their temperature and salinity components arising from different water masses, which shows that a warming signal in Labrador Sea Water and a freshening signal in Nordic Sea Water are two prominent sources of the geostrophic transport increase. Comparison of the temperature and salinity records of the 26.5°N array with the upstream records from repeated hydrographic sections across the Labrador Sea suggests that these thermohaline signals may be exported from the subpolar Atlantic via the deep western boundary current.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun Zhou, chunzhou@ouc.edu.cn

Abstract

At 26.5°N in the North Atlantic, a continuous transbasin observational array has been established since 2004 to detect the strength of the Atlantic meridional overturning circulation. The observational record shows that the subtropical Atlantic meridional overturning circulation has weakened by 2.5 ± 1.5 Sv (as mean ± 95% interval; 1 Sv ≡ 106 m3 s−1) since 2008 compared to the initial 4-yr average. Strengthening of the upper southward geostrophic transport (with a 2.6 ± 1.6 Sv southward increase) derived from thermal wind dominates this Atlantic meridional overturning circulation decline. We decompose the geostrophic transport into its temperature and salinity components to compare their contributions to the transport variability. The contributions of temperature and salinity components to the southward geostrophic transport strengthening are 1.0 ± 2.5 and 1.6 ± 1.3 Sv, respectively. The variation of salinity component is significant at the 95% confidence level, while the temperature component’s variation is not. This result highlights the vital role that salinity plays in the subtropical Atlantic meridional overturning circulation variability, which has been overlooked in previous studies. We further analyze the geostrophic transport variations and their temperature and salinity components arising from different water masses, which shows that a warming signal in Labrador Sea Water and a freshening signal in Nordic Sea Water are two prominent sources of the geostrophic transport increase. Comparison of the temperature and salinity records of the 26.5°N array with the upstream records from repeated hydrographic sections across the Labrador Sea suggests that these thermohaline signals may be exported from the subpolar Atlantic via the deep western boundary current.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun Zhou, chunzhou@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 384 MB)
Save
  • Bailey, D. A., P. B. Rhines, and S. Häkkinen, 2005: Formation and pathways of North Atlantic deep water in a coupled ice–ocean model of the Arctic–North Atlantic Oceans. Climate Dyn., 25, 497516, https://doi.org/10.1007/s00382-005-0050-3.

    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., and C. W. Hughes, 2008: Determining North Atlantic meridional transport variability from pressure on the western boundary: A model investigation. J. Geophys. Res., 113, C09008, https://doi.org/10.1029/2007JC004679.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., and T. Koenigk, 2016: Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries. Climate Dyn., 46, 28632882, https://doi.org/10.1007/s00382-015-2736-5.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., H. R. Longworth, and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655657, https://doi.org/10.1038/nature04385.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., W. E. Johns, B. A. King, G. McCarthy, E. L. McDonagh, B. I. Moat, and D. A. Smeed, 2020: Reduction in ocean heat transport at 26°N since 2008 cools the Eastern Subpolar Gyre of the North Atlantic Ocean. J. Climate, 33, 16771689, https://doi.org/10.1175/JCLI-D-19-0323.1.

    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493.

    • Search Google Scholar
    • Export Citation
  • Caesar, L., S. Rahmstorf, A. Robinson, G. Feulner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191196, https://doi.org/10.1038/s41586-018-0006-5.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., J. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172, https://doi.org/10.1175/JCLI-D-11-00463.1.

    • Search Google Scholar
    • Export Citation
  • Dickson, B., I. Yashayaev, J. Meincke, B. Turrell, and J. Holfort, 2002: Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416, 832837, https://doi.org/10.1038/416832a.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and Coauthors, 2000: The Arctic Ocean response to the North Atlantic oscillation. J. Climate, 13, 26712696, https://doi.org/10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280, https://doi.org/10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, D. G., J. Toole, G. Forget, J. D. Zika, A. C. Naveira Garabato, A. J. G. Nurser, and L. Yu, 2017: Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation. J. Phys. Oceanogr., 47, 633647, https://doi.org/10.1175/JPO-D-16-0089.1.

    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., 2015: Estimating the Atlantic overturning at 26°N using satellite altimetry and cable measurements. Geophys. Res. Lett., 42, 34583464, https://doi.org/10.1002/2015GL063220.

    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., M. Lankhorst, J. Koelling, and U. Send, 2018: Coherent circulation changes in the deep North Atlantic from 16°N and 26°N transport arrays. J. Geophys. Res. Oceans, 123, 34273443, https://doi.org/10.1029/2018JC013949.

    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., and Coauthors, 2019: Atlantic meridional overturning circulation: Observed transport and variability. Front. Mar. Sci., 6, 260, https://doi.org/10.3389/fmars.2019.00260.

    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., and Coauthors, 2021: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2020 (v2020.1). British Oceanographic Data Centre – Natural Environment Research Council, accessed 2 December 2021, https://doi.org/10.5285/cc1e34b3-3385-662b-e053-6c86abc03444.

  • Fu, Y., F. Li, J. Karstensen, and C. Wang, 2020: A stable Atlantic meridional overturning circulation in a changing North Atlantic Ocean since the 1990s. Sci. Adv., 6, eabc7836, https://doi.org/10.1126/sciadv.abc7836.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2020: ECCO version 4 release 4. PO.DAAC, accessed 21 May 2021, https://ecco.jpl.nasa.gov/drive/files/Version4/Release4/doc/v4r4_synopsis.pdf.

  • Getzlaff, J., C. W. Böning, C. Eden, and A. Biastoch, 2005: Signal propagation in the North Atlantic overturning. Geophys. Res. Lett., 32, L09602, https://doi.org/10.1029/2004GL021002.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703, https://doi.org/10.1029/2005GL023209.

    • Search Google Scholar
    • Export Citation
  • Gu, S., Z. Liu, and L. Wu, 2020: Time scale dependence of the meridional coherence of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 125, e2019JC015838, https://doi.org/10.1029/2019JC015838.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., D. J. Torres, and I. Yashayaev, 2013: Absolute velocity along the AR7W section in the Labrador Sea. Deep-Sea Res. I, 72, 7287, https://doi.org/10.1016/j.dsr.2012.11.005.

    • Search Google Scholar
    • Export Citation
  • Heuzé, C., 2017: North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Sci., 13, 609622, https://doi.org/10.5194/os-13-609-2017.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., L. S. Yu, and S. Q. Zhou, 2018: New definition of potential spicity by the least square method. J. Geophys. Res. Oceans, 123, 73517365, https://doi.org/10.1029/2018JC014306.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., L.-S. Yu, and S.-Q. Zhou, 2021: Quantifying climate signals: Spicity, orthogonality, and distance. J. Geophys. Res. Oceans, 126, e2020JC016646, https://doi.org/10.1029/2020JC016646.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

  • Kanzow, T., U. Send, and M. McCartney, 2008: On the variability of the deep meridional transports in the tropical North Atlantic. Deep-Sea Res. I, 55, 16011623, https://doi.org/10.1016/j.dsr.2008.07.011.

    • Search Google Scholar
    • Export Citation
  • Levang, S. J., and R. W. Schmitt, 2020: What causes the AMOC to weaken in CMIP5? J. Climate, 33, 15351545, https://doi.org/10.1175/JCLI-D-19-0547.1.

    • Search Google Scholar
    • Export Citation
  • Liu, W., S. P. Xie, Z. Liu, and J. Zhu, 2017: Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci. Adv., 3, e1601666, https://doi.org/10.1126/sciadv.1601666.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., F. Li, S. Bacon, F. Bahr, and J. Zhao, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., and Coauthors, 2015: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., M. B. Menary, J. V. Mecking, B. I. Moat, W. E. Johns, M. B. Andrews, D. Rayner, and D. A. Smeed, 2017: The importance of deep, basinwide measurements in optimized Atlantic meridional overturning circulation observing arrays. J. Geophys. Res. Oceans, 122, 18081826, https://doi.org/10.1002/2016JC012200.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., and Coauthors, 2020a: Sustainable observations of the AMOC: Methodology and technology. Rev. Geophys., 58, e2019RG000654, https://doi.org/10.1029/2019RG000654.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., L. C. Jackson, S. A. Cunningham, N. P. Holliday, D. A. Smeed, and D. P. Stevens, 2020b: Effects of climate change on the Atlantic Heat Conveyor relevant to the UK. MCCIP Science Review 2020, Marine Climate Change Impacts Partnership, 190207, https://doi.org/10.14465/2020.arc09.ahc.

  • Polo, I., J. Robson, R. Sutton, and M. A. Balmaseda, 2014: The importance of wind and buoyancy forcing for the boundary density variations and the geostrophic component of the AMOC at 26°N. J. Phys. Oceanogr., 44, 23872408, https://doi.org/10.1175/JPO-D-13-0264.1.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. Schaffernicht, 2015: Corrigendum: Evidence for an exceptional twentieth-century slowdown in Atlantic Ocean overturning. Nat. Climate Change, 5, 956956, https://doi.org/10.1038/nclimate2781.

    • Search Google Scholar
    • Export Citation
  • Reintges, A., T. Martin, M. Latif, and N. S. Keenlyside, 2017: Uncertainty in twenty-first century projections of the Atlantic meridional overturning circulation in CMIP3 and CMIP5 models. Climate Dyn., 49, 14951511, https://doi.org/10.1007/s00382-016-3180-x.

    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., and Coauthors, 2013: Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 40, 51645170, https://doi.org/10.1002/grl.50930.

    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, K. Lohmann, D. Smith, and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134, https://doi.org/10.1175/JCLI-D-11-00443.1.

    • Search Google Scholar
    • Export Citation
  • Robson, J., D. Hodson, E. Hawkins, and R. Sutton, 2014: Atlantic overturning in decline? Nat. Geosci., 7, 23, https://doi.org/10.1038/ngeo2050.

    • Search Google Scholar
    • Export Citation
  • Smeed, D. A., and Coauthors, 2014: Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci., 10, 2938, https://doi.org/10.5194/os-10-29-2014.

    • Search Google Scholar
    • Export Citation
  • Smeed, D. A., and Coauthors, 2018: The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett., 45, 15271533, https://doi.org/10.1002/2017GL076350.

    • Search Google Scholar
    • Export Citation
  • Srokosz, M. A., and H. L. Bryden, 2015: Observing the Atlantic meridional overturning circulation yields a decade of inevi surprises. Science, 348, 1255575, https://doi.org/10.1126/science.1255575.

    • Search Google Scholar
    • Export Citation
  • Thibodeau, B., C. Not, J. Zhu, A. Schmittner, D. Noone, C. Tabor, J. Zhang, and Z. Liu, 2018: Last century warming over the Canadian Atlantic shelves linked to weak Atlantic meridional overturning circulation. Geophys. Res. Lett., 45, 12 37612 385, https://doi.org/10.1029/2018GL080083.

    • Search Google Scholar
    • Export Citation
  • Thornalley, D. J. R., and Coauthors, 2018: Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556, 227230, https://doi.org/10.1038/s41586-018-0007-4.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. G. Curry, T. M. Joyce, M. Mccartney, and B. Pena-Molino, 2011: Transport of the North Atlantic deep western boundary current about 39°N, 70°W: 2004–2008. Deep-Sea Res. II, 58, 17681780, https://doi.org/10.1016/j.dsr2.2010.10.058.

    • Search Google Scholar
    • Export Citation
  • Vinje, T., 2000: Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate, 14, 35083517, https://doi.org/10.1175/1520-0442(2001)014<3508:FSIFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vinje, T., N. Nordlund, and A. Kvambekk, 1998: Monitoring ice thickness in Fram Strait. J. Geophys. Res., 103, 10 43710 449, https://doi.org/10.1029/97JC03360.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., M. Baringer, D. Smeed, W. Johns, and F. W. Landerer, 2019: Teleconnection between the Atlantic meridional overturning circulation and sea level in the Mediterranean Sea. J. Climate, 32, 935955, https://doi.org/10.1175/JCLI-D-18-0474.1.

    • Search Google Scholar
    • Export Citation
  • Waldman, R., J. Hirschi, A. Voldoire, C. Cassou, and R. Msadek, 2021: Clarifying the relation between AMOC and thermal wind: Application to the centennial variability in a coupled climate model. J. Phys. Oceanogr., 51, 343364, https://doi.org/10.1175/JPO-D-19-0284.1.

    • Search Google Scholar
    • Export Citation
  • Worthington, E. L., B. I. Moat, D. A. Smeed, J. V. Mecking, R. Marsh, and G. D. McCarthy, 2021: A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline. Ocean Sci., 17, 285299, https://doi.org/10.5194/os-17-285-2021.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., T. H. Dixon, P. G. Myers, J. Bonin, D. Chambers, M. R. Van den Broeke, M. H. Ribergaard, and J. Mortensen, 2016: Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun., 7, 10525, https://doi.org/10.1038/ncomms10525.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, https://doi.org/10.1029/2010GL044474.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., and W. Johns, 2014: Wind-forced interannual variability of the Atlantic meridional overturning circulation at 26.5°N. J. Geophys. Res. Oceans, 119, 24032419, https://doi.org/10.1002/2013JC009407.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., A. Bower, J. Yang, X. Lin, and N. Penny Holliday, 2018: Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic. Nat. Commun., 9, 1124, https://doi.org/10.1038/s41467-018-03134-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1233 1233 92
Full Text Views 228 228 6
PDF Downloads 285 285 6