“Eddy” Saturation of the Antarctic Circumpolar Current by Standing Waves

Andrew L. Stewart aDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Andrew L. Stewart in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5861-4070
,
Nicole K. Neumann bLamont-Doherty Earth Observatory, Columbia Climate School, Columbia University, Palisades, New York

Search for other papers by Nicole K. Neumann in
Current site
Google Scholar
PubMed
Close
, and
Aviv Solodoch aDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Aviv Solodoch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is now well established that changes in the zonal wind stress over the Antarctic Circumpolar Current (ACC) do not lead to changes in its baroclinicity nor baroclinic transport, a phenomenon referred to as “eddy saturation.” Previous studies provide contrasting dynamical mechanisms for this phenomenon: on one extreme, changes in the winds lead to changes in the efficiency with which transient eddies transfer momentum to the sea floor; on the other extreme, structural adjustments of the ACC’s standing meanders increase the efficiency of momentum transfer. In this study the authors investigate the relative importance of these mechanisms using an idealized, isopycnal channel model of the ACC. Via separate diagnoses of the model’s time-mean flow and eddy diffusivity, the authors decompose the model’s response to changes in wind stress into contributions from transient eddies and the mean flow. A key result is that holding the transient eddy diffusivity constant while varying the mean flow very closely compensates for changes in the wind stress, whereas holding the mean flow constant and varying the eddy diffusivity does not. This implies that eddy saturation primarily occurs due to adjustments in the ACC’s standing waves/meanders, rather than due to adjustments of transient eddy behavior. The authors derive a quasigeostrophic theory for ACC transport saturation by standing waves, in which the transient eddy diffusivity is held fixed, and thus provides dynamical insights into standing wave adjustment to wind changes. These findings imply that representing eddy saturation in global models requires adequate resolution of the ACC’s standing meanders, with wind-responsive parameterizations of the transient eddies being of secondary importance.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew L. Stewart, astewart@atmos.ucla.edu

Abstract

It is now well established that changes in the zonal wind stress over the Antarctic Circumpolar Current (ACC) do not lead to changes in its baroclinicity nor baroclinic transport, a phenomenon referred to as “eddy saturation.” Previous studies provide contrasting dynamical mechanisms for this phenomenon: on one extreme, changes in the winds lead to changes in the efficiency with which transient eddies transfer momentum to the sea floor; on the other extreme, structural adjustments of the ACC’s standing meanders increase the efficiency of momentum transfer. In this study the authors investigate the relative importance of these mechanisms using an idealized, isopycnal channel model of the ACC. Via separate diagnoses of the model’s time-mean flow and eddy diffusivity, the authors decompose the model’s response to changes in wind stress into contributions from transient eddies and the mean flow. A key result is that holding the transient eddy diffusivity constant while varying the mean flow very closely compensates for changes in the wind stress, whereas holding the mean flow constant and varying the eddy diffusivity does not. This implies that eddy saturation primarily occurs due to adjustments in the ACC’s standing waves/meanders, rather than due to adjustments of transient eddy behavior. The authors derive a quasigeostrophic theory for ACC transport saturation by standing waves, in which the transient eddy diffusivity is held fixed, and thus provides dynamical insights into standing wave adjustment to wind changes. These findings imply that representing eddy saturation in global models requires adequate resolution of the ACC’s standing meanders, with wind-responsive parameterizations of the transient eddies being of secondary importance.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew L. Stewart, astewart@atmos.ucla.edu
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, https://doi.org/10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., X. Zhai, and R. J. Greatbatch, 2016: Energetics of the global ocean: The role of mesoscale eddies. Indo-Pacific Climate Variability and Predictability, World Scientific, 109134, https://doi.org/10.1142/9789814696623_0004.

  • Arbic, B. K., and R. B. Scott, 2008: On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies. J. Phys. Oceanogr., 38, 84103, https://doi.org/10.1175/2007JPO3653.1.

    • Search Google Scholar
    • Export Citation
  • Bai, Y., Y. Wang, and A. L. Stewart, 2021: Does topographic form stress impede prograde ocean currents? J. Phys. Oceanogr., 51, 26172638, https://doi.org/10.1175/JPO-D-20-0189.1.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and A. F. Thompson, 2014: Configuration of a Southern Ocean storm track. J. Phys. Oceanogr., 44, 30723078, https://doi.org/10.1175/JPO-D-14-0062.1.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. De Szoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., and W. R. Young, 2017: Beta-plane turbulence above monoscale topography. J. Fluid Mech., 827, 415447, https://doi.org/10.1017/jfm.2017.482.

    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., and A. M. Hogg, 2019: Eddy saturation of the Southern Ocean: A baroclinic versus barotropic perspective. Geophys. Res. Lett., 46, 12 20212 212, https://doi.org/10.1029/2019GL084117.

    • Search Google Scholar
    • Export Citation
  • Davey, M. K., 1980: A quasi-linear theory for rotating flow over topography. Part 1. Steady β-plane channel. J. Fluid Mech., 99, 267292, https://doi.org/10.1017/S0022112080000614.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., K. L. Tracey, D. R. Watts, M. P. Chidichimo, and T. K. Chereskin, 2016: Mean Antarctic circumpolar current transport measured in Drake Passage. Geophys. Res. Lett., 43, 11 76011 767, https://doi.org/10.1002/2016GL070319.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, https://doi.org/10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., and Coauthors, 2015: An assessment of Antarctic circumpolar current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modell., 93, 84120, https://doi.org/10.1016/j.ocemod.2015.07.009.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Greatbatch, R. J., and K. G. Lamb, 1990: On parameterizing vertical mixing of momentum in non-eddy resolving ocean models. J. Phys. Oceanogr., 20, 16341637, https://doi.org/10.1175/1520-0485(1990)020<1634:OPVMOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, https://doi.org/10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Hazel, J. E., and A. L. Stewart, 2019: Are the near-Antarctic easterly winds weakening in response to enhancement of the Southern Annular Mode? J. Climate, 32, 18951918, https://doi.org/10.1175/JCLI-D-18-0402.1.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., and J. R. Blundell, 2006: Interdecadal variability of the Southern Ocean. J. Phys. Oceanogr., 36, 16261645, https://doi.org/10.1175/JPO2934.1.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620, https://doi.org/10.1175/2007JCLI1925.1.

    • Search Google Scholar
    • Export Citation
  • Howard, E., A. M. Hogg, S. Waterman, and D. P. Marshall, 2015: The injection of zonal momentum by buoyancy forcing in a Southern Ocean model. J. Phys. Oceanogr., 45, 259271, https://doi.org/10.1175/JPO-D-14-0098.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res.., 36A, 3953, https://doi.org/10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Kong, H., and M. F. Jansen, 2021: The impact of topography and eddy parameterization on the simulated Southern Ocean circulation response to changes in surface wind stress. J. Phys. Oceanogr., 51, 825843, https://doi.org/10.1175/JPO-D-20-0142.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • LeVeque, R. J., 2002: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 558 pp.

  • Maddison, J. R., and D. P. Marshall, 2013: The Eliassen–Palm flux tensor. J. Fluid Mech., 729, 69102, https://doi.org/10.1017/jfm.2013.259.

    • Search Google Scholar
    • Export Citation
  • Mak, J., J. R. Maddison, D. P. Marshall, and D. R. Munday, 2018: Implementation of a geometrically informed and energetically constrained mesoscale eddy parameterization in an ocean circulation model. J. Phys. Oceanogr., 48, 23632382, https://doi.org/10.1175/JPO-D-18-0017.1.

    • Search Google Scholar
    • Export Citation
  • Mak, J., D. P. Marshall, G. Madec, and J. R. Maddison, 2022: Acute sensitivity of global ocean circulation and heat content to eddy energy dissipation timescale. Geophys. Res. Lett., 49, e2021GL097259, https://doi.org/10.1029/2021GL097259.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., 2016: A theoretical model of long Rossby waves in the Southern Ocean and their interaction with bottom topography. Fluids, 1, 17, https://doi.org/10.3390/fluids1020017.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557, https://doi.org/10.1175/JPO-D-11-048.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., M. H. P. Ambaum, J. R. Maddison, D. R. Munday, and L. Novak, 2017: Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophys. Res. Lett., 44, 286292, https://doi.org/10.1002/2016GL071702.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, https://doi.org/10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, https://doi.org/10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2006: A model of the upper branch of the meridional overturning of the Southern Ocean. Prog. Oceanogr., 70, 331345, https://doi.org/10.1016/j.pocean.2006.07.004.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Olbers, H. Ross, and D. Wolf-Gladrow, 1993: Potential vorticity constraints on the dynamics and hydrography of the Southern Ocean. J. Phys. Oceanogr., 23, 465487, https://doi.org/10.1175/1520-0485(1993)023<0465:PVCOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mayewski, P. A., and Coauthors, 2009: State of the Antarctic and Southern Ocean climate system. Rev. Geophys., 47, RG1003, https://doi.org/10.1029/2007RG000231.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., 2016: Understanding the structure of changes in the Southern Ocean eddy field. Geophys. Res. Lett., 43, 58295832, https://doi.org/10.1002/2016GL069677.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, https://doi.org/10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. Naveira Garabato, A. M. Hogg, and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110, https://doi.org/10.1175/2011JCLI4204.1.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, https://doi.org/10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic circumpolar current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Search Google Scholar
    • Export Citation
  • Nadeau, L.-P., and R. Ferrari, 2015: The role of closed gyres in setting the zonal transport of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 45, 14911509, https://doi.org/10.1175/JPO-D-14-0173.1.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W. D., Jr., and J. M. Klinck, 1986: The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24, 469491, https://doi.org/10.1029/RG024i003p00469.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., D. Borowski, C. Völker, and J.-O. Woelff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16, 439470, https://doi.org/10.1017/S0954102004002251.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 626 pp.

  • Rintoul, S. R., 2018: The global influence of localized dynamics in the Southern Ocean. Nature, 558, 209218, https://doi.org/10.1038/s41586-018-0182-3.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and P. J. Dellar, 2016: An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force. J. Comput. Phys., 313, 99120, https://doi.org/10.1016/j.jcp.2015.12.042.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. M. Hogg, 2017: Reshaping the Antarctic Circumpolar Current via Antarctic Bottom Water export. J. Phys. Oceanogr., 47, 25772601, https://doi.org/10.1175/JPO-D-17-0007.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., J. C. McWilliams, and A. Solodoch, 2021: On the role of bottom pressure torques in wind-driven gyres. J. Phys. Oceanogr., 51, 14411464, https://doi.org/10.1175/JPO-D-20-0147.1.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776782, https://doi.org/10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic circumpolar current by standing meanders. J. Phys. Oceanogr., 44, 18111828, https://doi.org/10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 2009: Shifting westerlies. Science, 323, 14341435, https://doi.org/10.1126/science.1169823.

  • Toggweiler, J. R., J. Russell, and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, PA2005, https://doi.org/10.1029/2005PA001154.

    • Search Google Scholar
    • Export Citation
  • Towns, J., and Coauthors, 2014: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng., 16, 6274, https://doi.org/10.1109/MCSE.2014.80.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, https://doi.org/10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • Ward, M. L., and A. M. Hogg, 2011: Establishment of momentum balance by form stress in a wind-driven channel. Ocean Modell., 40, 133146, https://doi.org/10.1016/j.ocemod.2011.08.004.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., III, and R. G. Peterson, 1985: Volume transport of the Antarctic Circumpolar Current from bottom pressure measurements. J. Phys. Oceanogr., 15, 810816, https://doi.org/10.1175/1520-0485(1985)015<0810:VTOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., A. F. Thompson, A. Lazar, and K. J. Richards, 2017: ACC meanders, energy transfer, and mixed barotropic–baroclinic instability. J. Phys. Oceanogr., 47, 12911305, https://doi.org/10.1175/JPO-D-16-0160.1.

    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., G. R. Flierl, and R. Ferrari, 2019: Role of residual overturning for the sensitivity of Southern Ocean isopycnal slopes to changes in wind forcing. J. Phys. Oceanogr., 49, 28672881, https://doi.org/10.1175/JPO-D-19-0072.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 639 639 34
Full Text Views 213 213 9
PDF Downloads 285 285 14