Terdiurnal Radiational Tides

R. D. Ray aGeodesy and Geophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by R. D. Ray in
Current site
Google Scholar
PubMed
Close
,
J.-P. Boy bEcole et Observatoire des Sciences de la Terre, Université de Strasbourg, Strasbourg, France

Search for other papers by J.-P. Boy in
Current site
Google Scholar
PubMed
Close
,
S. Y. Erofeeva cCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by S. Y. Erofeeva in
Current site
Google Scholar
PubMed
Close
, and
G. D. Egbert cCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by G. D. Egbert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Terdiurnal atmospheric tides induce an S3 radiational ocean tide, similar to radiational tides S1 and S2 in the diurnal and semidiurnal bands. Although of small amplitude, the terdiurnal tide has some intriguing properties. The tide has an unusually pronounced seasonal variation, manifested by annual sidelines here denoted R3 and T3, which causes the tide to nearly vanish during times near an equinox. Forcing is generally largest in the winter hemisphere. Complicating matters, the two sideline frequencies coincide with those of nonlinear compound tides SK3 and SP3. Whether radiational tides or nonlinear tides (or both) are appearing at any given tide gauge can usually be determined by the relative amplitudes and phase differences of the two sidelines. The amplitudes of R3 and T3 are generally comparable; the amplitudes of SK3 and SP3 are not. Proper identification can lead to a small improvement in tidal prediction, but more importantly can lead to improved physical interpretation. An example from recent measurements under the Ross Ice Shelf bears on the role of nonlinearity in interactions between the ocean tide and the floating ice shelf.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. D. Ray, richard.ray@nasa.gov

Abstract

Terdiurnal atmospheric tides induce an S3 radiational ocean tide, similar to radiational tides S1 and S2 in the diurnal and semidiurnal bands. Although of small amplitude, the terdiurnal tide has some intriguing properties. The tide has an unusually pronounced seasonal variation, manifested by annual sidelines here denoted R3 and T3, which causes the tide to nearly vanish during times near an equinox. Forcing is generally largest in the winter hemisphere. Complicating matters, the two sideline frequencies coincide with those of nonlinear compound tides SK3 and SP3. Whether radiational tides or nonlinear tides (or both) are appearing at any given tide gauge can usually be determined by the relative amplitudes and phase differences of the two sidelines. The amplitudes of R3 and T3 are generally comparable; the amplitudes of SK3 and SP3 are not. Proper identification can lead to a small improvement in tidal prediction, but more importantly can lead to improved physical interpretation. An example from recent measurements under the Ross Ice Shelf bears on the role of nonlinearity in interactions between the ocean tide and the floating ice shelf.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. D. Ray, richard.ray@nasa.gov
Save
  • Akmaev, R. A., 2001: Seasonal variations of the terdiurnal tide in the mesosphere and lower thermosphere: A model study. Geophys. Res. Lett., 28, 38173820, https://doi.org/10.1029/2001GL013002.

    • Search Google Scholar
    • Export Citation
  • Amin, M., 1976: The fine resolution of tidal harmonics. Geophys. J. Roy. Astron. Soc., 44, 293310, https://doi.org/10.1111/j.1365-246X.1976.tb03658.x.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., 2005: Atmospheric forcing of the oceanic semidiurnal tide. Geophys. Res. Lett., 32, L02610, https://doi.org/10.1029/2004GL021668.

    • Search Google Scholar
    • Export Citation
  • Begeman, C. B., S. Tulaczyk, L. Padman, M. King, M. R. Sieffried, T. O. Hodson, and H. A. Fricker, 2020: Tidal pressurization of the ocean cavity near an Antarctic ice shelf grounding line. J. Geophys. Res. Oceans, 125, e2019JC015562, https://doi.org/10.1029/2019JC015562.

    • Search Google Scholar
    • Export Citation
  • Blewitt, G., W. C. Hammond, and C. Kreemer, 2018: Harnessing the GPS data explosion for interdisciplinary science. Eos, 99, https://doi.org/10.1029/2018EO104623.

    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., and A. C. Edden, 1973: Corrected tables of tidal harmonics. Geophys. J. Roy. Astron. Soc., 33, 253264, https://doi.org/10.1111/j.1365-246X.1973.tb03420.x.

    • Search Google Scholar
    • Export Citation
  • Covey, C., A. Dai, R. S. Lindzen, and D. R. Marsh, 2014: Atmospheric tides in the latest generation of climate models. J. Atmos. Sci., 71, 19051913, https://doi.org/10.1175/JAS-D-13-0358.1.

    • Search Google Scholar
    • Export Citation
  • Dobslaw, H., and M. Thomas, 2005: Atmospheric induced oceanic tides from ECMWF forecasts. Geophys. Res. Lett., 32, L10615, https://doi.org/10.1029/2005GL022990.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Godin, G., 1986: Is the abnormal response of the tide at the frequency of S2 really due to radiational effects? Cont. Shelf Res., 6, 615625, https://doi.org/10.1016/0278-4343(86)90026-9.

    • Search Google Scholar
    • Export Citation
  • Hann, J., 1918: Untersuchungen über die tägliche Oszillation des Barometers: III. Die dritteltägige Luftdruckschwankung. Denkschr. Akad. Wiss. Wien, 95, 164.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis, 2006: Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn., 56, 394415, https://doi.org/10.1007/s10236-006-0086-x.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., W. J. Steenburgh, and D. M. Schultz, 1991: Diurnal surface-pressure variations over the continental United States and the influence of sea level reduction. Mon. Wea. Rev., 119, 28142830, https://doi.org/10.1175/1520-0493(1991)119<2814:DSPVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meeus, J., 1998: Astronomical Algorithms. 2nd ed. Willmann-Bell, 488 pp.

  • Moudden, Y., and J. M. Forbes, 2013: A decade-long climatology of terdiurnal tides using TIMED/SABER observations. J. Geophys. Res. Space Phys., 118, 45344550, https://doi.org/10.1002/jgra.50273.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and D. E. Cartwright, 1966: Tidal spectroscopy and prediction. Philos. Trans. Roy. Soc., A259, 533581, https://doi.org/10.1098/rsta.1966.0024.

    • Search Google Scholar
    • Export Citation
  • Padman, L., M. R. Siegfried, and H. A. Fricker, 2018: Ocean tide influences on the Antarctic and Greenland ice sheets. Rev. Geophys., 56, 142184, https://doi.org/10.1002/2016RG000546.

    • Search Google Scholar
    • Export Citation
  • Pauley, P. M., 1998: An example of uncertainty in sea level pressure reduction. Wea. Forecasting, 13, 833850, https://doi.org/10.1175/1520-0434(1998)013<0833:AEOUIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pugh, D. T., and P. L. Woodworth, 2014: Sea Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes. Cambridge University Press, 407 pp.

  • Ray, R. D., 2001: Comparisons of global analyses and station observations of the S2 barometric tide. J. Atmos. Sol.-Terr. Phys., 63, 10851097, https://doi.org/10.1016/S1364-6826(01)00018-9.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 2013: Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res. Oceans, 118, 45704584, https://doi.org/10.1002/jgrc.20336.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. D. Egbert, 2004: The global S1 tide. J. Phys. Oceanogr., 34, 19221935, https://doi.org/10.1175/1520-0485(2004)034<1922:TGST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and S. Poulose, 2005: Terdiurnal surface-pressure oscillations over the continental United States. Mon. Wea. Rev., 133, 25262534, https://doi.org/10.1175/MWR2988.1.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., K. M. Larson, and B. J. Haines, 2021: New determinations of tides on the north-western Ross Ice Shelf. Antarct. Sci., 33, 89102, https://doi.org/10.1017/S0954102020000498.

    • Search Google Scholar
    • Export Citation
  • Schureman, P., 1940: Manual of harmonic analysis and prediction of tides. Special Publ. 98, U.S. Department of Commerce Coast & Geodetic Survey, 336 pp.

  • Siebert, M., 1961: Atmospheric tides. Adv. Geophys., 7, 105187, https://doi.org/10.1016/S0065-2687(08)60362-3.

  • Smith, A. K., 2000: Structure of the terdiurnal tide at 95 km. Geophys. Res. Lett., 27, 177180, https://doi.org/10.1029/1999GL010843.

    • Search Google Scholar
    • Export Citation
  • Smith, A., N. Lott, and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, https://doi.org/10.1175/2011BAMS3015.1.

    • Search Google Scholar
    • Export Citation
  • Thayaparan, T., 1997: The terdiurnal tide in the mesosphere and lower thermosphere over London, Canada (43°N, 81°W). J. Geophys. Res., 102, 21 69521 708, https://doi.org/10.1029/97JD01839.

    • Search Google Scholar
    • Export Citation
  • Tracey, K. L., K. A. Donohue, D. R. Watts, and T. Chereskin, 2013: cDrake CPIES data report. GSO Tech. Rep. 2013-01, Graduate School of Oceanography, University of Rhode Island, 80 pp.

  • van den Dool, H. M., S. Saha, J. Schemm, and J. Huang, 1997: A temporal interpolation method to obtain hourly atmospheric surface pressure tides in reanalysis 1979–1995. J. Geophys. Res., 102, 22 01322 024, https://doi.org/10.1029/97JD01571.

    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., J. R. Hunter, M. Marcos, P. Caldwell, M. Menéndez, and I. Haigh, 2016: Towards a global higher-frequency sea level dataset. Geosci. Data J., 3, 5059, https://doi.org/10.1002/gdj3.42.

    • Search Google Scholar
    • Export Citation
  • Zetler, B. D., 1971: Radiational ocean tides along the coasts of the United States. J. Phys. Oceanogr., 1, 3438, https://doi.org/10.1175/1520-0485(1971)001<0032:ROTATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 495 495 12
Full Text Views 135 135 1
PDF Downloads 161 161 3