Seasonal Eddy Variability in the Northwestern Tropical Atlantic Ocean

Minghai Huang aSchool of Marine Science and Policy, University of Delaware, Lewes, Delaware

Search for other papers by Minghai Huang in
Current site
Google Scholar
PubMed
Close
,
Yang Yang bSchool of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China
cState Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China

Search for other papers by Yang Yang in
Current site
Google Scholar
PubMed
Close
, and
Xinfeng Liang aSchool of Marine Science and Policy, University of Delaware, Lewes, Delaware

Search for other papers by Xinfeng Liang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Eddies in the northwestern tropical Atlantic Ocean play a crucial role in transporting the South Atlantic Upper Ocean Water to the North Atlantic and connect the Atlantic and the Caribbean Sea. Although surface characteristics of those eddies have been well studied, their vertical structures and governing mechanisms are much less known. Here, using a time-dependent energetics framework based on the multiscale window transform, we examine the seasonal variability of the eddy kinetic energy (EKE) in the northwestern tropical Atlantic. Both altimeter-based data and ocean reanalyses show a substantial EKE seasonal cycle in the North Brazil Current Retroflection (NBCR) region that is mostly trapped in the upper 200 m. In the most energetic NBCR region, the EKE reaches its minimum in April–June and maximum in July–September. By analyzing six ocean reanalysis products, we find that barotropic instability is the controlling mechanism for the seasonal eddy variability in the NBCR region. Nonlocal processes, including advection and pressure work, play opposite roles in the EKE seasonal cycle. In the eastern part of the NBCR region, the EKE seasonal evolution is similar to the NBCR region. However, it is the nonlocal processes that control the EKE seasonality. In the western part of the NBCR region, the EKE magnitude is one order of magnitude smaller than in the NBCR region and shows a different seasonal cycle, which peaks in March and reaches its minimum in October–November. Our results highlight the complex mechanisms governing eddy variability in the northwestern tropical Atlantic and provide insights into their potential changes with changing background conditions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minghai Huang, minghaih@udel.edu

Abstract

Eddies in the northwestern tropical Atlantic Ocean play a crucial role in transporting the South Atlantic Upper Ocean Water to the North Atlantic and connect the Atlantic and the Caribbean Sea. Although surface characteristics of those eddies have been well studied, their vertical structures and governing mechanisms are much less known. Here, using a time-dependent energetics framework based on the multiscale window transform, we examine the seasonal variability of the eddy kinetic energy (EKE) in the northwestern tropical Atlantic. Both altimeter-based data and ocean reanalyses show a substantial EKE seasonal cycle in the North Brazil Current Retroflection (NBCR) region that is mostly trapped in the upper 200 m. In the most energetic NBCR region, the EKE reaches its minimum in April–June and maximum in July–September. By analyzing six ocean reanalysis products, we find that barotropic instability is the controlling mechanism for the seasonal eddy variability in the NBCR region. Nonlocal processes, including advection and pressure work, play opposite roles in the EKE seasonal cycle. In the eastern part of the NBCR region, the EKE seasonal evolution is similar to the NBCR region. However, it is the nonlocal processes that control the EKE seasonality. In the western part of the NBCR region, the EKE magnitude is one order of magnitude smaller than in the NBCR region and shows a different seasonal cycle, which peaks in March and reaches its minimum in October–November. Our results highlight the complex mechanisms governing eddy variability in the northwestern tropical Atlantic and provide insights into their potential changes with changing background conditions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Minghai Huang, minghaih@udel.edu
Save
  • Aguedjou, H. M. A., I. Dadou, A. Chaigneau, Y. Morel, and G. Alory, 2019: Eddies in the Tropical Atlantic Ocean and their seasonal variability. Geophys. Res. Lett., 46, 12 15612 164, https://doi.org/10.1029/2019GL083925.

    • Search Google Scholar
    • Export Citation
  • Aroucha, L. C., D. Veleda, F. S. Lopes, P. Tyaquiçã, N. Lefèvre, and M. Araujo, 2020: Intra‐ and inter‐annual variability of North Brazil Current rings using angular momentum eddy detection and tracking algorithm: Observations from 1993 to 2016. J. Geophys. Res. Oceans, 125, e2019JC015921, https://doi.org/10.1029/2019JC015921.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., T. Reynaud, A. Beckmann, C. Böning, J.-M. Molines, S. Barnard, and Y. Jia, 2001: On the seasonal variability and eddies in the North Brazil Current: Insights from model intercomparison experiments. Prog. Oceanogr., 48, 195230, https://doi.org/10.1016/S0079-6611(01)00005-2.

    • Search Google Scholar
    • Export Citation
  • Blockley, E. W., and Coauthors, 2014: Recent development of the Met Office operational ocean forecasting system: An overview and assessment of the new Global FOAM forecasts. Geosci. Model Dev., 7, 26132638, https://doi.org/10.5194/gmd-7-2613-2014.

    • Search Google Scholar
    • Export Citation
  • Castelão, G. P., 2011: The internal structure, seasonality, and generation mechanisms of surface North Brazil Current rings. Ph.D. dissertation, University of Miami, 128 pp.

  • Chang, P., and Coauthors, 2008: Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon. Nat. Geosci., 1, 444448, https://doi.org/10.1038/ngeo218.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., B. Qiu, S. Chen, Y. Qi, and Y. Du, 2015: Seasonal eddy kinetic energy modulations along the North Equatorial Countercurrent in the western Pacific. J. Geophys. Res. Oceans, 120, 63516362, https://doi.org/10.1002/2015JC011054.

    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. Park and L. Xu, Eds., Springer, 303–343, https://doi.org/10.1007/978-3-642-35088-7_13.

  • da Silveira, I. C. A., W. S. Brown, and G. R. Flierl, 2000: Dynamics of the North Brazil Current retroflection region from the Western Tropical Atlantic Experiment observations. J. Geophys. Res., 105, 28 55928 583, https://doi.org/10.1029/2000JC900129.

    • Search Google Scholar
    • Export Citation
  • de Decco, H. T., A. R. Torres Jr., L. P. Pezzi, and L. Landau, 2018: Revisiting tropical instability wave variability in the Atlantic ocean using SODA reanalysis. Ocean Dyn., 68, 327345, https://doi.org/10.1007/s10236-017-1128-2.

    • Search Google Scholar
    • Export Citation
  • de Freitas Assad, L. P., R. Toste, C. S. Böck, D. M. Nehme, L. Sancho, A. E. Soares, and L. Landau, 2020: Ocean climatology at Brazilian equatorial margin: A numerical approach. J. Comput. Sci., 44, 101159, https://doi.org/10.1016/j.jocs.2020.101159.

    • Search Google Scholar
    • Export Citation
  • Douglass, E. M., and J. G. Richman, 2015: Analysis of ageostrophy in strong surface eddies in the Atlantic Ocean. J. Geophys. Res. Oceans, 120, 14901507, https://doi.org/10.1002/2014JC010350.

    • Search Google Scholar
    • Export Citation
  • Febres-Ortega, G., and L. E. Herrera, 1976: Caribbean Sea circulation and water mass transports near the Lesser Antilles. Bol. Inst. Oceanogr., 15, 8396.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Fratantoni, D. M., W. E. Johns, and T. L. Townsend, 1995: Rings of the North Brazil Current: Their structure and behavior inferred from observations and a numerical simulation. J. Geophys. Res., 100, 10 63310 654, https://doi.org/10.1029/95JC00925.

    • Search Google Scholar
    • Export Citation
  • Fu, Y., P. Brandt, F. P. Tuchen, J. F. Lübbecke, and C. Wang, 2022: Representation of the mean Atlantic subtropical cells in CMIP6 models. J. Geophys. Res. Oceans, 127, e2021JC018191, https://doi.org/10.1029/2021JC018191.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., A. Ffield, and Q. Yao, 2003: North Brazil Current rings and the variability in the latitude of retroflection. Interhemispheric Water Exchange in the Atlantic Ocean, G. J. Goni and P. Malanotte-Rizzoli, Eds., Elsevier Oceanography Series, Vol. 68, Elsevier, 357–373, https://doi.org/10.1016/S0422-9894(03)80154-X.

  • Goni, G. J., and W. E. Johns, 2001: A census of North Brazil Current rings observed from TOPEX/POSEIDON altimetry: 1992–1998. Geophys. Res. Lett., 28, 14, https://doi.org/10.1029/2000GL011717.

    • Search Google Scholar
    • Export Citation
  • Goni, G. J., and W. E. Johns, 2003: Synoptic study of warm rings in the North Brazil Current retroflection region using satellite altimetry. Interhemispheric Water Exchange in the Atlantic Ocean, G. J. Goni and P. Malanotte-Rizzoli, Eds., Elsevier Oceanography Series, Vol. 68, Elsevier, 335–356, https://doi.org/10.1016/S0422-9894(03)80153-8.

  • Holopainen, E. O., 1978: A diagnostic study of the kinetic energy balance of the long-term mean flow and the associated transient fluctuations in the atmosphere. Geophysica, 15, 125145.

    • Search Google Scholar
    • Export Citation
  • Huang, M., X. Liang, Y. Zhu, Y. Liu, and R. H. Weisberg, 2021: Eddies connect the tropical Atlantic Ocean and the Gulf of Mexico. Geophys. Res. Lett., 48, e2020GL091277, https://doi.org/10.1029/2020GL091277.

    • Search Google Scholar
    • Export Citation
  • Hüttl, S., and C. W. Böning, 2006: Mechanisms of decadal variability in the shallow subtropical-tropical circulation of the Atlantic Ocean: A model study. J. Geophys. Res., 111, C07011, https://doi.org/10.1029/2005JC003414.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., P. Malanotte-Rizzoli, and A. Busalacchi, 2004: Tropical instability waves in the Atlantic Ocean. Ocean Modell., 7, 145163, https://doi.org/10.1016/S1463-5003(03)00042-8.

    • Search Google Scholar
    • Export Citation
  • Jochumsen, K., M. Rhein, S. Hüttl‐Kabus, and C. W. Böning, 2010: On the propagation and decay of North Brazil Current rings. J. Geophys. Res., 115, C10004, https://doi.org/10.1029/2009JC006042.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. N. Lee, F. A. Schott, R. J. Zantopp, and R. H. Evans, 1990: The North Brazil Current retroflection: Seasonal structure and eddy variability. J. Geophys. Res., 95, 22 10322 120, https://doi.org/10.1029/JC095iC12p22103.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. N. Lee, R. C. Beardsley, J. Candela, R. Limeburner, and B. Castro, 1998: Annual cycle and variability of the North Brazil Current. J. Phys. Oceanogr., 28, 103128, https://doi.org/10.1175/1520-0485(1998)028<0103:ACAVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. L. Townsend, D. M. Fratantoni, and W. D. Wilson, 2002: On the Atlantic inflow to the Caribbean Sea. Deep-Sea Res. I, 49, 211243, https://doi.org/10.1016/S0967-0637(01)00041-3.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., J. Sheinbaum, B. Barnier, J. M. Molines, and J. Candela, 2012: Seasonal and Interannual modulation of the eddy kinetic energy in the Caribbean Sea. J. Phys. Oceanogr., 42, 20412055, https://doi.org/10.1175/JPO-D-12-048.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2017: On the evaluation of seasonal variability of the ocean kinetic energy. J. Phys. Oceanogr., 47, 16751683, https://doi.org/10.1175/JPO-D-17-0063.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., E. N. Curchitser, and A. Rosati, 2016: Seasonal variability of the Gulf Stream kinetic energy. J. Phys. Oceanogr., 46, 11891207, https://doi.org/10.1175/JPO-D-15-0235.1.

    • Search Google Scholar
    • Export Citation
  • Körner, M., M. Claus, P. Brandt, and F. P. Tuchen, 2022: Sources and pathways of intraseasonal meridional kinetic energy in the equatorial Atlantic Ocean. J. Phys. Oceanogr., 52, 24452462, https://doi.org/10.1175/JPO-D-21-0315.1.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2013: Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci., 9, 5781, https://doi.org/10.5194/os-9-57-2013.

    • Search Google Scholar
    • Export Citation
  • Liang, X., 2016: Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J. Atmos. Sci., 73, 44394468, https://doi.org/10.1175/JAS-D-16-0131.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and A. R. Robinson, 2007: Localized multi-scale energy and vorticity analysis: II. Finite-amplitude instability theory and validation. Dyn. Atmos. Oceans, 44, 5176, https://doi.org/10.1016/j.dynatmoce.2007.04.001.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and D. G. M. Anderson, 2007: Multiscale window transform. Multiscale Model. Simul., 6, 437467, https://doi.org/10.1137/06066895X.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and A. R. Robinson, 2009: Multiscale processes and nonlinear dynamics of the circulation and upwelling events off Monterey Bay. J. Phys. Oceanogr., 39, 290313, https://doi.org/10.1175/2008JPO3950.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., X. Liang, and R. H. Weisberg, 2007: Rectification of the bias in the wavelet power spectrum. J. Atmos. Oceanic Technol., 24, 20932102, https://doi.org/10.1175/2007JTECHO511.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Search Google Scholar
    • Export Citation
  • Ma, J., and X. Liang, 2017: Multiscale dynamical processes underlying the wintertime Atlantic blockings. J. Atmos. Sci., 74, 38153831, https://doi.org/10.1175/JAS-D-16-0295.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Mélice, J.-L., and S. Arnault, 2017: Investigation of the intra-annual variability of the North Equatorial countercurrent/North Brazil Current eddies and of the instability waves of the North Tropical Atlantic Ocean using satellite altimetry and empirical mode decomposition. J. Atmos. Oceanic Technol., 34, 22952310, https://doi.org/10.1175/JTECH-D-17-0032.1.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlock, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Ramonville Saint-Agne, France, 13–21.

  • Metzger, E. J., and Coauthors., 2014: US Navy operational global ocean and Arctic ice prediction systems. Oceanography, 27, 3243, https://doi.org/10.5670/oceanog.2014.66.

    • Search Google Scholar
    • Export Citation
  • Murphy, S. J., H. E. Hurlburt, and J. J. O’Brien, 1999: The connectivity of eddy variability in the Caribbean Sea, the Gulf of Mexico, and the Atlantic Ocean. J. Geophys. Res., 104, 14311453, https://doi.org/10.1029/1998JC900010.

    • Search Google Scholar
    • Export Citation
  • Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, https://doi.org/10.1175/2009JTECHO725.1.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1983: A new look at the energy cycle. J. Atmos. Sci., 40, 16691688, https://doi.org/10.1175/1520-0469(1983)040<1669:ANLATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pujol, M.-I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, H. Sasaki, and Y. Sasai, 2014: Seasonal mesoscale and submesoscale eddy variability along the North Pacific subtropical countercurrent. J. Phys. Oceanogr., 44, 30793098, https://doi.org/10.1175/JPO-D-14-0071.1.

    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., and D. Walsh, 1986: Mapping climatological seasonal variations of surface currents in the tropical Atlantic using ship drifts. J. Geophys. Res., 91, 10 53710 550, https://doi.org/10.1029/JC091iC09p10537.

    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., G. E. Hufford, R. Limeburner, and W. S. Brown, 1994: North Brazil Current retroflection eddies. J. Geophys. Res., 99, 50815093, https://doi.org/10.1029/93JC03486.

    • Search Google Scholar
    • Export Citation
  • Rieck, J. K., C. W. Böning, R. J. Greatbatch, and M. Scheinert, 2015: Seasonal variability of eddy kinetic energy in a global high-resolution ocean model. Geophys. Res. Lett., 42, 93799386, https://doi.org/10.1002/2015GL066152.

    • Search Google Scholar
    • Export Citation
  • Rosell-Fieschi, M., J. L. Pelegrí, and J. Gourrion, 2015: Zonal jets in the equatorial Atlantic Ocean. Prog. Oceanogr., 130, 118, https://doi.org/10.1016/j.pocean.2014.08.008.

    • Search Google Scholar
    • Export Citation
  • Rühs, S., J. V. Durgadoo, E. Behrens, and A. Biastoch, 2013: Advective timescales and pathways of Agulhas leakage Geophys. Res. Lett., 40, 39974000, https://doi.org/10.1002/grl.50782.

    • Search Google Scholar
    • Export Citation
  • Rühs, S., K. Getzlaff, J. V. Durgadoo, A. Biastoch, and C. W. Böning, 2015: On the suitability of North Brazil Current transport estimates for monitoring basin‐scale AMOC changes. Geophys. Res. Lett., 42, 80728080, https://doi.org/10.1002/2015GL065695.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, Y. Sasai, and B. Qiu, 2017: Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean. Ocean Dyn., 67, 11951216, https://doi.org/10.1007/s10236-017-1083-y.

    • Search Google Scholar
    • Export Citation
  • Sharma, N., S. P. Anderson, P. Brickley, C. Nobre, and M. L. Cadwallader, 2009: Quantifying the seasonal and interannual variability of the formation and migration pattern of North Brazil Current rings. OCEANS 2009, Biloxi, MS, Institute of Electrical and Electronics Engineers, 1–7, https://doi.org/10.23919/OCEANS.2009.5422142.

  • Storto, A., and S. Masina, 2016: C-GLORSv5: An improved multipurpose global ocean eddy-permitting physical reanalysis. Earth Syst. Sci. Data, 8, 679696, https://doi.org/10.5194/essd-8-679-2016.

    • Search Google Scholar
    • Export Citation
  • Tuchen, F. P., J. F. Lübbecke, P. Brandt, and Y. Fu, 2020: Observed transport variability of the Atlantic subtropical cells and their connection to tropical sea surface temperature variability. J. Geophys. Res. Oceans, 125, e2020JC016592, https://doi.org/10.1029/2020JC016592.

    • Search Google Scholar
    • Export Citation
  • Tuchen, F. P., P. Brandt, J. F. Lübbecke, and R. Hummels, 2022: Transports and pathways of the tropical AMOC return flow from Argo data and shipboard velocity measurements. J. Geophys. Res. Oceans, 127, e2021JC018115, https://doi.org/10.1029/2021JC018115.

    • Search Google Scholar
    • Export Citation
  • Vallès‐Casanova, I., E. Fraile‐Nuez, M. Martín‐Rey, E. van Sebille, A. Cabré, A. Olivé‐Abelló, and J. L. Pelegrí, 2022: Water mass transports and pathways in the North Brazil‐Equatorial Undercurrent retroflection. J. Geophys. Res. Oceans, 127, e2021JC018150, https://doi.org/10.1029/2021JC018150.

    • Search Google Scholar
    • Export Citation
  • van der Boog, C. G., and Coauthors, 2019: The impact of upwelling on the intensification of anticyclonic ocean eddies in the Caribbean Sea. Ocean Sci., 15, 14191437, https://doi.org/10.5194/os-15-1419-2019.

    • Search Google Scholar
    • Export Citation
  • van der Boog, C. G., M. J. Molemaker, H. A. Dijkstra, J. D. Pietrzak, and C. A. Katsman, 2022: Generation of vorticity near topography: Anticyclones in the Caribbean Sea. J. Geophys. Res. Oceans, 127, e2021JC017987, https://doi.org/10.1029/2021JC017987.

    • Search Google Scholar
    • Export Citation
  • van Westen, R. M., and Coauthors, 2018: Mechanisms of the 40–70 day variability in the Yucatan Channel volume transport. J. Geophys. Res. Oceans, 123, 12861300, https://doi.org/10.1002/2017JC013580.

    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., P. Brandt, and C. Eden, 2008: Generation of tropical instability waves in the Atlantic Ocean. J. Geophys. Res., 113, C08034, https://doi.org/10.1029/2007JC004712.

    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and S. Pierini, 2020: On the role of the Kuroshio extension bimodality in modulating the surface eddy kinetic energy seasonal variability. Geophys. Res. Lett., 47, e2019GL086308, https://doi.org/10.1029/2019GL086308.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Z. Jing, Q. Zhang, P. Chang, Z. Chen, H. Liu, and L. Wu, 2019: Ocean eddy energetics in the spectral space as revealed by high-resolution general circulation models. J. Phys. Oceanogr., 49, 28152827, https://doi.org/10.1175/JPO-D-19-0034.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, W. D., and W. E. Johns, 1997: Velocity structure and transport in the Windward Islands passages. Deep-Sea Res., 44A, 487520, https://doi.org/10.1016/S0967-0637(96)00113-6.

    • Search Google Scholar
    • Export Citation
  • Wilson, W. D., W. E. Johns, and S. L. Garzoli, 2002: Velocity structure of North Brazil Current rings. Geophys. Res. Lett., 29, 114–1114–4, https://doi.org/10.1029/2001GL013869.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., P. Heimbach, R. M. Ponte, and I. Fukumori, 2009: The global general circulation of the ocean estimated by the ECCO-consortium. Oceanography, 22, 88103, https://doi.org/10.5670/oceanog.2009.41.

    • Search Google Scholar
    • Export Citation
  • Xu, F., and X. Liang, 2017: On the generation and maintenance of the 2012/13 sudden stratospheric warming. J. Atmos. Sci., 74, 32093228, https://doi.org/10.1175/JAS-D-17-0002.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. Liang, 2018: On the seasonal eddy variability in the Kuroshio extension. J. Phys. Oceanogr., 48, 16751689, https://doi.org/10.1175/JPO-D-18-0058.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. Liang, 2019a: New perspectives on the generation and maintenance of the Kuroshio large meander. J. Phys. Oceanogr., 49, 20952113, https://doi.org/10.1175/JPO-D-18-0276.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and X. Liang, 2019b: Spatiotemporal variability of the global ocean internal processes inferred from satellite observations. J. Phys. Oceanogr., 49, 21472164, https://doi.org/10.1175/JPO-D-18-0273.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., X. Liang, B. Qiu, and S. Chen, 2017: On the decadal variability of the eddy kinetic energy in the Kuroshio Extension. J. Phys. Oceanogr., 47, 11691187, https://doi.org/10.1175/JPO-D-16-0201.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., R. H. Weisberg, Y. Liu, and X. Liang, 2020: Instabilities and multiscale interactions underlying the loop current eddy shedding in the Gulf of Mexico. J. Phys. Oceanogr., 50, 12891317, https://doi.org/10.1175/JPO-D-19-0202.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., R. Msadek, M. J. McPhaden, and T. Delworth, 2011: Multidecadal variability of the North Brazil Current and its connection to the Atlantic meridional overturning circulation. J. Geophys. Res., 116, C04012, https://doi.org/10.1029/2010JC006812.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Y. Hui, T. Qu, and D. Hu, 2021: Seasonal variability of subthermocline eddy kinetic energy east of the Philippines. J. Phys. Oceanogr., 51, 685699, https://doi.org/10.1175/JPO-D-20-0101.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y.-B., X. Liang, and J. Gan, 2016: Nonlinear multiscale interactions and internal dynamics underlying a typical eddy-shedding event at Luzon Strait. J. Geophys. Res. Oceans, 121, 82088229, https://doi.org/10.1002/2016JC012483.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., Y. Yang, X. Liang, and Y. Zhang, 2022: Different mechanisms for the seasonal variations of the mesoscale eddy energy in the South China Sea. Deep-Sea Res. I, 179, 103677, https://doi.org/10.1016/j.dsr.2021.103677.

    • Search Google Scholar
    • Export Citation
  • Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis-analysis system for ocean and sea-ice: A description of the system and assessment. Ocean Sci., 15, 779808, https://doi.org/10.5194/os-15-779-2019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 566 566 15
Full Text Views 328 328 7
PDF Downloads 405 405 9