The Coastal Effect on Ahead-of-Eye-Center Cooling Induced by Tropical Cyclones

Yunxia Zheng aShanghai Typhoon Institute, China Meteorological Administration, and Key Laboratory of Numerical Modeling for Tropical Cyclone, China Meteorological Administration, Shanghai, China

Search for other papers by Yunxia Zheng in
Current site
Google Scholar
PubMed
Close
,
Zhanhong Ma bCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Zhanhong Ma in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9123-6224
,
Jie Tang aShanghai Typhoon Institute, China Meteorological Administration, and Key Laboratory of Numerical Modeling for Tropical Cyclone, China Meteorological Administration, Shanghai, China

Search for other papers by Jie Tang in
Current site
Google Scholar
PubMed
Close
, and
Zheliang Zhang bCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Zheliang Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The characteristics of in-storm cooling occurring ahead of the eye center are investigated based on a combination of observations and numerical simulations, as well as its sensitivity to tropical cyclone (TC) characteristics and oceanic climatological conditions. A composite of drifter and remote sensing observations from 1979 to 2020 in the Northern Hemisphere statistically evidences that the percentage of TC-induced ahead-of-eye-center cooling is enhanced remarkably over the coastal ocean compared with that over the open sea, no matter what the TC intensity, translation speed, and prestorm SST conditions are. Results are statistically similar when the actual ahead-of-eye SST cooling is used. Idealized numerical simulation results show that as the TC center approaches the coastline, the percentage of ahead-of-eye-center cooling increases steadily with the water depth shallowing below 100 m. This phenomenon may not be caused by strong stratification of the coastal ocean, as previous studies suggested. An ocean heat balance analysis reveals a new mechanism responsible for the enhanced percentage of ahead-of-eye-center cooling near the coast: although the vertical mixing dominates in the surface cooling process over the open sea, broad and intense advection is largely responsible for the rapid increase of the percentage of ahead-of-eye-center cooling over the coastal ocean, owing to less cold-water entrainment from below. A series of sensitivity experiments are conducted by varying TC characteristics in terms of intensity, translation speed, radius of maximum wind speed, and ocean characteristics in terms of temperature profiles and slope rates of the shelf. The percentage of ahead-of-eye-center cooling is dependent on the intensity and translation speed of TCs but shows little sensitivity to other parameters.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhanhong Ma, mazhanhong17@nudt.edu.cn

Abstract

The characteristics of in-storm cooling occurring ahead of the eye center are investigated based on a combination of observations and numerical simulations, as well as its sensitivity to tropical cyclone (TC) characteristics and oceanic climatological conditions. A composite of drifter and remote sensing observations from 1979 to 2020 in the Northern Hemisphere statistically evidences that the percentage of TC-induced ahead-of-eye-center cooling is enhanced remarkably over the coastal ocean compared with that over the open sea, no matter what the TC intensity, translation speed, and prestorm SST conditions are. Results are statistically similar when the actual ahead-of-eye SST cooling is used. Idealized numerical simulation results show that as the TC center approaches the coastline, the percentage of ahead-of-eye-center cooling increases steadily with the water depth shallowing below 100 m. This phenomenon may not be caused by strong stratification of the coastal ocean, as previous studies suggested. An ocean heat balance analysis reveals a new mechanism responsible for the enhanced percentage of ahead-of-eye-center cooling near the coast: although the vertical mixing dominates in the surface cooling process over the open sea, broad and intense advection is largely responsible for the rapid increase of the percentage of ahead-of-eye-center cooling over the coastal ocean, owing to less cold-water entrainment from below. A series of sensitivity experiments are conducted by varying TC characteristics in terms of intensity, translation speed, radius of maximum wind speed, and ocean characteristics in terms of temperature profiles and slope rates of the shelf. The percentage of ahead-of-eye-center cooling is dependent on the intensity and translation speed of TCs but shows little sensitivity to other parameters.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhanhong Ma, mazhanhong17@nudt.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.6381 MB)
Save
  • Andreas, E. L., and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751, https://doi.org/10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, W. J., and T. D. Dickey, 2008: Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. J. Geophys. Res., 113, C08009, https://doi.org/10.1029/2007JC004358.

    • Search Google Scholar
    • Export Citation
  • Chiang, T.-L., C.-R. Wu, and L.-Y. Oey, 2011: Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr., 41, 221233, https://doi.org/10.1175/2010JPO4518.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., 2015: The relative roles of the ocean and atmosphere as revealed by buoy air–sea observations in hurricanes. Mon. Wea. Rev., 143, 904913, https://doi.org/10.1175/MWR-D-13-00380.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, https://doi.org/10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., C. J. Donlon, A. Stuart-Menteth, and F. J. Wentz, 2003: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett., 30, 1140, https://doi.org/10.1029/2002GL016291.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., F. J. Wentz, C. A. Mears, and K. S. Deborah, 2004: In situ validation of tropical rainfall measuring mission microwave sea surface temperatures. J. Geophys. Res., 109, C04021, https://doi.org/10.1029/2003JC002092.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., T. Meissner, and F. J. Wentz, 2010: Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote Sens., 48, 10091018, https://doi.org/10.1109/TGRS.2009.2030322.

    • Search Google Scholar
    • Export Citation
  • Glenn, S. M., and Coauthors, 2016: Stratified coastal ocean interactions with tropical cyclones. Nat. Commun., 7, 10887, https://doi.org/10.1038/ncomms10887.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys., 227, 35953624, https://doi.org/10.1016/j.jcp.2007.06.016.

    • Search Google Scholar
    • Export Citation
  • Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 13471365, https://doi.org/10.1175/1520-0493(2000)128<1347:TIBHOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, P., T. B. Sanford, and J. Imberger, 2009: Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J. Geophys. Res., 114, C12023, https://doi.org/10.1029/2009JC005603.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., and L. K. Shay, 2003: The role of oceanic mesoscale features on the tropical cyclone–induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649676, https://doi.org/10.1175/1520-0485(2003)33<649:TROOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, https://doi.org/10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, https://doi.org/10.1175/2009MWR2849.1.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., R. Ferrari, and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, https://doi.org/10.1029/2009GL041808.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck III, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) project, version 4. NOAA National Centers for Environmental Information, accessed 10 September 2021, https://doi.org/10.25921/82ty-9e16.

  • Li, X., X. Cheng, J. Fei, and X. Huang, 2022: A numerical study on the role of mesoscale cold-core eddies in modulating the upper-ocean responses to Typhoon Trami (2018). J. Phys. Oceanogr., 52, 31013122, https://doi.org/10.1175/JPO-D-22-0080.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, https://doi.org/10.1175/2008MWR2277.1.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and L. Centurioni, 2019: Global Drifter Program quality-controlled 6-hour interpolated data from ocean surface drifting buoys. NOAA National Centers for Environmental Information, accessed 25 August 2021, https://doi.org/10.25921/7ntx-z961.

  • Lumpkin, R., S. A. Grodsky, L. Centurioni, M.-H. Rio, J. A. Carton, and D. Lee, 2013: Removing spurious low-frequency variability in drifter velocities. J. Atmos. Oceanic Technol., 30, 353360, https://doi.org/10.1175/JTECH-D-12-00139.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., 2020: A study of the interaction between Typhoon Francisco (2013) and a cold core eddy. Part I: Rapid weakening. J. Atmos. Sci., 77, 355377, https://doi.org/10.1175/JAS-D-18-0378.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., and J. Fei, 2022: A comparison between moist and dry tropical cyclones: The low effectiveness of surface sensible heat flux in storm intensification. J. Atmos. Sci., 79, 3149, https://doi.org/10.1175/JAS-D-21-0014.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, Y. Lin, and X. Huang, 2020a: Modulation of clouds and rainfall by tropical cyclone’s cold wakes. Geophys. Res. Lett., 47, e2020GL088873, https://doi.org/10.1029/2020GL088873.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, X. Huang, X. Cheng, and L. Liu, 2020b: A study of the interaction between Typhoon Francisco (2013) and a cold-core eddy. Part II: Boundary layer structures. J. Atmos. Sci., 77, 28652883, https://doi.org/10.1175/JAS-D-19-0339.1.

    • Search Google Scholar
    • Export Citation
  • Mao, Q., S. W. Chang, and R. L. Pfeffer, 2000: Influence of large-scale initial oceanic mixed layer depth on tropical cyclones. Mon. Wea. Rev., 128, 40584070, https://doi.org/10.1175/1520-0493(2000)129<4058:IOLSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 37453765, https://doi.org/10.1175/JCLI-D-12-00125.1.

    • Search Google Scholar
    • Export Citation
  • Morey, S. L., M. A. Bourassa, D. S. Dukhovskoy, and J. J. O’Brien, 2006: Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dyn., 56, 594606, https://doi.org/10.1007/s10236-006-0085-y.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., and Coauthors, 2019: Rapid decay of slowly moving Typhoon Soulik (2018) due to interactions with the strongly stratified northern East China Sea. Geophys. Res. Lett., 46, 14 59514 603, https://doi.org/10.1029/2019GL086274.

    • Search Google Scholar
    • Export Citation
  • Pei, Y., R.-H. Zhang, and D. Chen, 2019: Roles of different physical processes in upper ocean responses to Typhoon Rammasun (2008)-induced wind forcing. Sci. China Earth Sci., 62, 684692, https://doi.org/10.1007/s11430-018-9313-8.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind‐mixed layer. Geophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., J. Morzel, and P. P. Niiler, 2008: Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res., 113, C07010, https://doi.org/10.1029/2007JC004393.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. F. Price, and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, https://doi.org/10.1175/2010JPO4313.1.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The oceans effect on the intensity of tropical cyclones results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper-ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 22720 248, https://doi.org/10.1029/92JC01586.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and D. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115, 228244, https://doi.org/10.1006/jcph.1994.1189.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, G. Madec, J. Vialard, G. Samson, N. C. Jourdain, E. Menkes, and S. Jullien, 2012: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C02020, https://doi.org/10.1029/2011JC007396.

    • Search Google Scholar
    • Export Citation
  • Wang, G., L. Wu, N. C. Johnson, and Z. Ling, 2016: Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophys. Res. Lett., 43, 76327638, https://doi.org/10.1002/2016GL069605.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. L. Gentemann, D. K. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850, https://doi.org/10.1126/science.288.5467.847.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2008: Improving the ocean initialization of coupled hurricane–ocean models using feature-based data assimilation. Mon. Wea. Rev., 136, 25922607, https://doi.org/10.1175/2007MWR2166.1.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts. Mon. Wea. Rev., 137, 44104419, https://doi.org/10.1175/2009MWR2863.1.

    • Search Google Scholar
    • Export Citation
  • Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu, and G. L. Mellor, 2002: Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res., 107, 3232, https://doi.org/10.1029/2001JC000969.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., D. Chen, L. Zhou, X. Liu, T. Ding, and B. Zhou, 2016: Upper ocean response to Typhoon Kalmaegi (2014). J. Geophys. Res. Oceans, 121, 65206535, https://doi.org/10.1002/2016JC012064.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Y. Wang, W. Zhang, and J. Xu, 2019: Coastal ocean response and its feedback to Typhoon Hato (2017) over the South China Sea: A numerical study. J. Geophys. Res. Atmos., 124, 13 73113 749, https://doi.org/10.1029/2019JD031377.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1105 1063 22
Full Text Views 234 219 9
PDF Downloads 291 271 13