Energy and Momentum of a Density-Driven Overflow in the Samoan Passage

Gunnar Voet aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Gunnar Voet in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1975-186X
,
Matthew H. Alford aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
,
Jesse M. Cusack aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California
bCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Jesse M. Cusack in
Current site
Google Scholar
PubMed
Close
,
Larry J. Pratt cWoods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Larry J. Pratt in
Current site
Google Scholar
PubMed
Close
,
James B. Girton dApplied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by James B. Girton in
Current site
Google Scholar
PubMed
Close
,
Glenn S. Carter eDepartment of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Glenn S. Carter in
Current site
Google Scholar
PubMed
Close
,
Jody M. Klymak fUniversity of Victoria, Victoria, British Columbia, Canada

Search for other papers by Jody M. Klymak in
Current site
Google Scholar
PubMed
Close
,
Shuwen Tan gLamont-Doherty Earth Observatory, Columbia University, Palisades, New York
hUniversity of California, Irvine, Irvine, California

Search for other papers by Shuwen Tan in
Current site
Google Scholar
PubMed
Close
, and
Andreas M. Thurnherr gLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Andreas M. Thurnherr in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The energy and momentum balance of an abyssal overflow across a major sill in the Samoan Passage is estimated from two highly resolved towed sections, set 16 months apart, and results from a two-dimensional numerical simulation. Driven by the density anomaly across the sill, the flow is relatively steady. The system gains energy from divergence of horizontal pressure work O ( 5 ) kW m 1 and flux of available potential energy O ( 2 ) kW m 1 . Approximately half of these gains are transferred into kinetic energy while the other half is lost to turbulent dissipation, bottom drag, and divergence in vertical pressure work. Small-scale internal waves emanating downstream of the sill within the overflow layer radiate O ( 1 ) kW m 1 upward but dissipate most of their energy within the dense overflow layer and at its upper interface. The strongly sheared and highly stratified upper interface acts as a critical layer inhibiting any appreciable upward radiation of energy via topographically generated lee waves. Form drag of O ( 2 ) N m 2 , estimated from the pressure drop across the sill, is consistent with energy lost to dissipation and internal wave fluxes. The topographic drag removes momentum from the mean flow, slowing it down and feeding a countercurrent aloft. The processes discussed in this study combine to convert about one-third of the energy released from the cross-sill density difference into turbulent mixing within the overflow and at its upper interface. The observed and modeled vertical momentum flux divergence sustains gradients in shear and stratification, thereby maintaining an efficient route for abyssal water mass transformation downstream of this Samoan Passage sill.

This article is included in the Oceanic Flow–Topography Interations Special Collection.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gunnar Voet, gvoet@ucsd.edu

Abstract

The energy and momentum balance of an abyssal overflow across a major sill in the Samoan Passage is estimated from two highly resolved towed sections, set 16 months apart, and results from a two-dimensional numerical simulation. Driven by the density anomaly across the sill, the flow is relatively steady. The system gains energy from divergence of horizontal pressure work O ( 5 ) kW m 1 and flux of available potential energy O ( 2 ) kW m 1 . Approximately half of these gains are transferred into kinetic energy while the other half is lost to turbulent dissipation, bottom drag, and divergence in vertical pressure work. Small-scale internal waves emanating downstream of the sill within the overflow layer radiate O ( 1 ) kW m 1 upward but dissipate most of their energy within the dense overflow layer and at its upper interface. The strongly sheared and highly stratified upper interface acts as a critical layer inhibiting any appreciable upward radiation of energy via topographically generated lee waves. Form drag of O ( 2 ) N m 2 , estimated from the pressure drop across the sill, is consistent with energy lost to dissipation and internal wave fluxes. The topographic drag removes momentum from the mean flow, slowing it down and feeding a countercurrent aloft. The processes discussed in this study combine to convert about one-third of the energy released from the cross-sill density difference into turbulent mixing within the overflow and at its upper interface. The observed and modeled vertical momentum flux divergence sustains gradients in shear and stratification, thereby maintaining an efficient route for abyssal water mass transformation downstream of this Samoan Passage sill.

This article is included in the Oceanic Flow–Topography Interations Special Collection.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gunnar Voet, gvoet@ucsd.edu
Save
  • Aguilar, D. A., and B. R. Sutherland, 2006: Internal wave generation from rough topography. Phys. Fluids, 18, 066603, https://doi.org/10.1063/1.2214538.

    • Search Google Scholar
    • Export Citation
  • Aguilar, D. A., B. R. Sutherland, and D. J. Muraki, 2006: Laboratory generation of internal waves from sinusoidal topography. Deep-Sea Res. II, 53, 96115, https://doi.org/10.1016/j.dsr2.2005.09.015.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. B. Girton, G. Voet, G. S. Carter, J. B. Mickett, and J. M. Klymak, 2013: Turbulent mixing and hydraulic control of abyssal water in the Samoan Passage. Geophys. Res. Lett., 40, 46684674, https://doi.org/10.1002/grl.50684.

    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., C. J. Shakespeare, J. Kleypas, F. S. Castruccio, and E. Curchitser, 2020: Particle-based Lagrangian filtering for locating wave-generated thermal refugia for coral reefs. J. Geophys. Res. Oceans, 125, e2020JC016106, https://doi.org/10.1029/2020JC016106.

    • Search Google Scholar
    • Export Citation
  • Bray, N. A., and N. P. Fofofnoff, 1981: Available potential energy for MODE eddies. J. Phys. Oceanogr., 11, 3047, https://doi.org/10.1175/1520-0485(1981)011<0030:APEFME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and A. J. G. Nurser, 2003: Effects of strait mixing on ocean stratification. J. Phys. Oceanogr., 33, 18701872, https://doi.org/10.1175/1520-0485(2003)033<1870:EOSMOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carruthers, D. J., and J. C. R. Hunt, 1986: Velocity fluctuations near an interface between a turbulent region and a stably stratified layer. J. Fluid Mech., 165, 475501, https://doi.org/10.1017/S002211208600318X.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and Coauthors, 2019: A spatial geography of abyssal turbulent mixing in the Samoan Passage. Oceanography, 32, 194203, https://doi.org/10.5670/oceanog.2019.425.

    • Search Google Scholar
    • Export Citation
  • Clément, L., A. M. Thurnherr, and L. C. St. Laurent, 2017: Turbulent mixing in a deep fracture zone on the Mid-Atlantic Ridge. J. Phys. Oceanogr., 47, 18731896, https://doi.org/10.1175/JPO-D-16-0264.1.

    • Search Google Scholar
    • Export Citation
  • Cusack, J. M., A. C. Naveira Garabato, D. A. Smeed, and J. B. Girton, 2017: Observation of a large lee wave in the Drake Passage. J. Phys. Oceanogr., 47, 793810, https://doi.org/10.1175/JPO-D-16-0153.1.

    • Search Google Scholar
    • Export Citation
  • Cusack, J. M., G. Voet, M. H. Alford, J. B. Girton, G. S. Carter, L. J. Pratt, K. A. Pearson-Potts, and S. Tan, 2019: Persistent turbulence in the Samoan Passage. J. Phys. Oceanogr., 49, 31793197, https://doi.org/10.1175/JPO-D-19-0116.1.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. G. Nurser, and A. C. Naveira Garabato, 2016a: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016b: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, https://doi.org/10.1175/JPO-D-14-0259.1.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., S. Groeskamp, J. Zika, and H. L. Johnson, 2022: The role of mixing in the large-scale ocean circulation. Ocean Mixing, Elsevier, 35–63, https://doi.org/10.1016/B978-0-12-821512-8.00010-4.

  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, https://doi.org/10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Dohan, K., and B. R. Sutherland, 2003: Internal waves generated from a turbulent mixed region. Phys. Fluids, 15, 488498, https://doi.org/10.1063/1.1530159.

    • Search Google Scholar
    • Export Citation
  • Edwards, K. A., P. MacCready, J. N. Moum, G. Pawlak, J. M. Klymak, and A. Perlin, 2004: Form drag and mixing due to tidal flow past a sharp point. J. Phys. Oceanogr., 34, 12971312, https://doi.org/10.1175/1520-0485(2004)034<1297:FDAMDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and J. D. Smith, 1980: Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res., 27A, 239245, https://doi.org/10.1016/0198-0149(80)90015-1.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and L. Armi, 1999a: The generation and trapping of solitary waves over topography. Science, 283, 188190, https://doi.org/10.1126/science.283.5399.188.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and L. Armi, 1999b: Stratified flow over topography: The role of small-scale entrainment and mixing in flow establishment. Proc. Roy. Soc., 455A, 32213258, https://doi.org/10.1098/rspa.1999.0448.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche fracture zone. J. Phys. Oceanogr., 28, 19291945, https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and M. Visbeck, 1993: Deep velocity profiling with self-contained ADCPs. J. Atmos. Oceanic Technol., 10, 764773, https://doi.org/10.1175/1520-0426(1993)010<0764:DVPWSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Freeland, H., 2001: Observations of the flow of abyssal water through the Samoa Passage. J. Phys. Oceanogr., 31, 22732279, https://doi.org/10.1175/1520-0485(2001)031<2273:OOTFOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

  • Girton, J. B., and Coauthors, 2019: Flow-topography interactions in the Samoan Passage. Oceanography, 32, 184193, https://doi.org/10.5670/oceanog.2019.424.

    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible, stratified fluid. J. Fluid Mech., 107, 221225, https://doi.org/10.1017/S0022112081001742.

    • Search Google Scholar
    • Export Citation
  • Ijichi, T., L. St Laurent, K. L. Polzin, and J. M. Toole, 2020: How variable is mixing efficiency in the abyss? Geophys. Res. Lett., 47, e2019GL086813, https://doi.org/10.1029/2019GL086813.

    • Search Google Scholar
    • Export Citation
  • Jagannathan, A., K. B. Winters, and L. Armi, 2020: The effect of a strong density step on blocked stratified flow over topography. J. Fluid Mech., 889, A23, https://doi.org/10.1017/jfm.2020.87.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., T. B. Sanford, and M. O. Baringer, 1994a: Stress on the Mediterranean outflow plume: Part I. Velocity and water property measurements. J. Phys. Oceanogr., 24, 20722083, https://doi.org/10.1175/1520-0485(1994)024<2072:SOTMOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., R. G. Lueck, and T. B. Sanford, 1994b: Stress on the Mediterranean outflow plume: Part II. Turbulent dissipation and shear measurements. J. Phys. Oceanogr., 24, 20842092, https://doi.org/10.1175/1520-0485(1994)024<2084:SOTMOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and Coauthors, 2019: Energy and momentum lost to wake eddies and lee waves generated by the North Equatorial Current and tidal flows at Peleliu, Palau. Oceanography, 32, 110125, https://doi.org/10.5670/oceanog.2019.417.

    • Search Google Scholar
    • Export Citation
  • Kang, D., 2010: Energetics and dynamics of internal tides in Monterey Bay using numerical simulations. Ph.D. thesis, Stanford University, 170 pp.

  • Kang, D., and O. Fringer, 2010: On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40, 25392545, https://doi.org/10.1175/2010JPO4497.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, https://doi.org/10.1175/JPO-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Kida, S., J. Yang, and J. F. Price, 2009: Marginal sea overflows and the upper ocean interaction. J. Phys. Oceanogr., 39, 387403, https://doi.org/10.1175/2008JPO3934.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and M. C. Gregg, 2004: Tidally generated turbulence over the Knight Inlet sill. J. Phys. Oceanogr., 34, 11351151, https://doi.org/10.1175/1520-0485(2004)034<1135:TGTOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and S. M. Legg, 2010: A simple mixing scheme for models that resolve breaking internal waves. Ocean Modell., 33, 224234, https://doi.org/10.1016/j.ocemod.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010a: High-mode stationary waves in stratified flow over large obstacles. J. Fluid Mech., 644, 312336, https://doi.org/10.1017/S0022112009992503.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010b: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 20592074, https://doi.org/10.1175/2010JPO4396.1.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2008: On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid. J. Fluid Mech., 597, 415427, https://doi.org/10.1017/S0022112007009743.

    • Search Google Scholar
    • Export Citation
  • Legg, S., 2021: Mixing by oceanic lee waves. Annu. Rev. Fluid Mech., 53, 173201, https://doi.org/10.1146/annurev-fluid-051220-043904.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., G. Pawlak, K. Edwards, and R. McCabe, 2003: Form drag on ocean flows. Near Boundary Processes and Their Parameterization: Proc. 13th‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 119–130.

  • McCabe, R. M., P. MacCready, and G. Pawlak, 2006: Form drag due to flow separation at a headland. J. Phys. Oceanogr., 36, 21362152, https://doi.org/10.1175/JPO2966.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and J. D. Nash, 2000: Topographically induced drag and mixing at a small bank on the continental shelf. J. Phys. Oceanogr., 30, 20492054, https://doi.org/10.1175/1520-0485(2000)030<2049:TIDAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and W. D. Smyth, 2006: The pressure disturbance of a nonlinear internal wave train. J. Fluid Mech., 558, 153177, https://doi.org/10.1017/S0022112006000036.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., J. M. Klymak, J. D. Nash, A. Perlin, and W. D. Smyth, 2007: Energy transport by nonlinear internal waves. J. Phys. Oceanogr., 37, 19681988, https://doi.org/10.1175/JPO3094.1.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., and J. N. Moum, 2001: Internal hydraulic flows on the continental shelf: High drag states over a small bank. J. Geophys. Res., 106, 45934611, https://doi.org/10.1029/1999JC000183.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., H. Peters, S. M. Kelly, J. L. Pelegrí, M. Emelianov, and M. Gasser, 2012: Turbulence and high-frequency variability in a deep gravity current outflow. Geophys. Res. Lett., 39, L18611, https://doi.org/10.1029/2012GL052899.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, https://doi.org/10.1126/science.1090929.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and J. A. Whitehead, 2007: Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere. Atmospheric and Oceanographic Sciences Library, Vol. 36, Springer, 592 pp., https://doi.org/10.1007/978-0-387-49572-9.

  • Pratt, L. J., G. Voet, A. Pacini, S. Tan, M. H. Alford, G. S. Carter, J. B. Girton, and D. Menemenlis, 2019: Pacific abyssal transport and mixing: Through the Samoan Passage versus around the Manihiki Plateau. J. Phys. Oceanogr., 49, 15771592, https://doi.org/10.1175/JPO-D-18-0124.1.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., and P. F. Lonsdale, 1974: On the flow of water through the Samoan Passage. J. Phys. Oceanogr., 4, 5873, https://doi.org/10.1175/1520-0485(1974)004<0058:OTFOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., S. Hautala, and D. Rudnick, 1996: Northward abyssal transport through the Samoan Passage and adjacent regions. J. Geophys. Res., 101, 14 03914 055, https://doi.org/10.1029/96JC00797.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 1997: Direct velocity measurements in the Samoan Passage. J. Geophys. Res., 102, 32933302, https://doi.org/10.1029/96JC03286.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2018: The life cycle of spontaneously generated internal waves. J. Phys. Oceanogr., 48, 343359, https://doi.org/10.1175/JPO-D-17-0153.1.

    • Search Google Scholar
    • Export Citation
  • Spingys, C. P., A. C. Naveira Garabato, S. Legg, K. L. Polzin, E. P. Abrahamsen, C. E. Buckingham, A. Forryan, and E. E. Frajka-Williams, 2021: Mixing and transformation in a deep western boundary current: A case study. J. Phys. Oceanogr., 51, 12051222, https://doi.org/10.1175/JPO-D-20-0132.1.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Tan, S., L. J. Pratt, G. Voet, J. M. Cusack, K. R. Helfrich, M. H. Alford, J. B. Girton, and G. S. Carter, 2022: Hydraulic control of flow in a multi-passage system connecting two basins. J. Fluid Mech., 940, A8, https://doi.org/10.1017/jfm.2022.212.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc., A286, 125181, https://doi.org/10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1981: An experimental study of critical layers. J. Fluid Mech., 103, 321344, https://doi.org/10.1017/S0022112081001365.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1996: The cross-slope transport of momentum by internal waves generated by alongslope currents over topography. J. Phys. Oceanogr., 26, 191204, https://doi.org/10.1175/1520-0485(1996)026<0191:TCSTOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., and L. Li, 2014: Turbulent hydraulic jumps in a stratified shear flow. Part 2. J. Fluid Mech., 758, 94120, https://doi.org/10.1017/jfm.2014.502.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., J. Malarkey, G. Voet, M. H. Alford, J. B. Girton, and G. S. Carter, 2018: Application of a model of internal hydraulic jumps. J. Fluid Mech., 834, 125148, https://doi.org/10.1017/jfm.2017.646.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., and K. G. Speer, 2003: Boundary mixing and topographic blocking on the Mid-Atlantic Ridge in the South Atlantic. J. Phys. Oceanogr., 33, 848862, https://doi.org/10.1175/1520-0485(2003)33<848:bmatbo>2.0.co;2.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., L. C. St. Laurent, K. G. Speer, J. M. Toole, and J. R. Ledwell, 2005: Mixing associated with sills in a canyon on the Midocean Ridge Flank. J. Phys. Oceanogr., 35, 13701381, https://doi.org/10.1175/JPO2773.1.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., E. Kunze, J. M. Toole, L. St. Laurent, K. J. Richards, and A. Ruiz-Angulo, 2015: Vertical kinetic energy and turbulent dissipation in the ocean. Geophys. Res. Lett., 42, 76397647, https://doi.org/10.1002/2015GL065043.

    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., B. K. Arbic, J. G. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft, 2016: Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modell., 97, 109128, https://doi.org/10.1016/j.ocemod.2015.10.013.

    • Search Google Scholar
    • Export Citation
  • Voet, G., J. B. Girton, M. H. Alford, G. S. Carter, J. M. Klymak, and J. B. Mickett, 2015: Pathways, volume transport and mixing of abyssal water in the Samoan Passage. J. Phys. Oceanogr., 45, 562588, https://doi.org/10.1175/JPO-D-14-0096.1.

    • Search Google Scholar
    • Export Citation
  • Voet, G., M. H. Alford, J. B. Girton, G. S. Carter, J. B. Mickett, and J. M. Klymak, 2016: Warming and weakening of the abyssal flow through Samoan Passage. J. Phys. Oceanogr., 46, 23892401, https://doi.org/10.1175/JPO-D-16-0063.1.

    • Search Google Scholar
    • Export Citation
  • Voet, G., M. H. Alford, J. A. MacKinnon, and J. D. Nash, 2020: Topographic form drag on tides and low-frequency flow: Observations of nonlinear lee waves over a tall submarine ridge near Palau. J. Phys. Oceanogr., 50, 14891507, https://doi.org/10.1175/JPO-D-19-0257.1.

    • Search Google Scholar
    • Export Citation
  • Warner, S. J., and P. MacCready, 2009: Dissecting the pressure field in tidal flow past a headland: When is form drag “real”? J. Phys. Oceanogr., 39, 29712984, https://doi.org/10.1175/2009JPO4173.1.

    • Search Google Scholar
    • Export Citation
  • Warner, S. J., P. MacCready, J. N. Moum, and J. D. Nash, 2013: Measurement of tidal form drag using seafloor pressure sensors. J. Phys. Oceanogr., 43, 11501172, https://doi.org/10.1175/JPO-D-12-0163.1.

    • Search Google Scholar
    • Export Citation
  • Welch, W. T., P. Smolarkiewicz, R. Rotunno, and B. A. Boville, 2001: The large-scale effects of flow over periodic mesoscale topography. J. Atmos. Sci., 58, 14771492, https://doi.org/10.1175/1520-0469(2001)058<1477:tlseof>2.0.co;2.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A., 1998: Topographic control of oceanic flows in deep passages and straits. Rev. Geophys., 36, 423440, https://doi.org/10.1029/98RG01014.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and L. Armi, 2014: Topographic control of stratified flows: Upstream jets, blocking and isolating layers. J. Fluid Mech., 753, 80103, https://doi.org/10.1017/jfm.2014.363.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, https://doi.org/10.1017/S002211209500125X.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 749 749 48
Full Text Views 287 287 15
PDF Downloads 313 313 16