Topographically Generated Submesoscale Shear Instabilities Associated with Brazil Current Meanders

Caique D. Luko aInstituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Caique D. Luko in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7006-6572
,
Cauê Z. Lazaneo aInstituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Cauê Z. Lazaneo in
Current site
Google Scholar
PubMed
Close
,
Ilson C. A. da Silveira aInstituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Ilson C. A. da Silveira in
Current site
Google Scholar
PubMed
Close
,
Filipe Pereira aInstituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
bSchool for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts

Search for other papers by Filipe Pereira in
Current site
Google Scholar
PubMed
Close
, and
Amit Tandon bSchool for Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, Massachusetts
cMechanical Engineering Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts

Search for other papers by Amit Tandon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The western boundary current system off southeastern Brazil is composed of the poleward-flowing Brazil Current (BC) in the upper 300 m and the equatorward flowing Intermediate Western Boundary Current (IWBC) underneath it, forming a first-baroclinic mode structure in the mean. Between 22° and 23°S, the BC-IWBC jet develops recurrent cyclonic meanders that grow quasi-stationarily via baroclinic instability, though their triggering mechanisms are not yet well understood. Our study, thus, aims to propose a mechanism that could initiate the formation of these mesoscale eddies by adding the submesoscale component to the hydrodynamic scenario. To address this, we perform a regional 1/50° (∼2 km) resolution numerical simulation using CROCO (Coastal and Regional Ocean Community model). Our results indicate that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instability that can trigger the meanders’ formation. Subsequently, this process generates submesoscale cyclones that contribute, along with baroclinic instability, to the meanders’ growth, resulting in a submesoscale-to-mesoscale inverse cascade. Last, as the mesoscale cyclones grow, they interact with the slope, generating inertially and symmetrically unstable anticyclonic submesoscale vortices and filaments.

Significance Statement

Off southeastern Brazil, the Brazil Current develops recurrent cyclonic meanders. Such meanders enhance the open-ocean primary productivity and are of societal importance as they are located in a region rich in oil and gas where oil-spill accidents have already happened. This study aims to explore the processes responsible for triggering the formation of these mesoscale eddies. We find that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instabilities that eject submesoscale filaments and vortices and can trigger the meanders’ formation. Such results show that topographically generated submesoscale instabilities can play an important role in the dynamics of mesoscale meanders off southeastern Brazil. Moreover, this may indicate that resolving the submesoscale dynamics in operational numerical models may contribute to an increase in the predictability of the regional eddies.

Luko’s current affiliation: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Caique D. Luko, cdiasluko@ucsd.edu

Abstract

The western boundary current system off southeastern Brazil is composed of the poleward-flowing Brazil Current (BC) in the upper 300 m and the equatorward flowing Intermediate Western Boundary Current (IWBC) underneath it, forming a first-baroclinic mode structure in the mean. Between 22° and 23°S, the BC-IWBC jet develops recurrent cyclonic meanders that grow quasi-stationarily via baroclinic instability, though their triggering mechanisms are not yet well understood. Our study, thus, aims to propose a mechanism that could initiate the formation of these mesoscale eddies by adding the submesoscale component to the hydrodynamic scenario. To address this, we perform a regional 1/50° (∼2 km) resolution numerical simulation using CROCO (Coastal and Regional Ocean Community model). Our results indicate that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instability that can trigger the meanders’ formation. Subsequently, this process generates submesoscale cyclones that contribute, along with baroclinic instability, to the meanders’ growth, resulting in a submesoscale-to-mesoscale inverse cascade. Last, as the mesoscale cyclones grow, they interact with the slope, generating inertially and symmetrically unstable anticyclonic submesoscale vortices and filaments.

Significance Statement

Off southeastern Brazil, the Brazil Current develops recurrent cyclonic meanders. Such meanders enhance the open-ocean primary productivity and are of societal importance as they are located in a region rich in oil and gas where oil-spill accidents have already happened. This study aims to explore the processes responsible for triggering the formation of these mesoscale eddies. We find that incoming anticyclones reach the slope upstream of separation regions and generate barotropic instabilities that eject submesoscale filaments and vortices and can trigger the meanders’ formation. Such results show that topographically generated submesoscale instabilities can play an important role in the dynamics of mesoscale meanders off southeastern Brazil. Moreover, this may indicate that resolving the submesoscale dynamics in operational numerical models may contribute to an increase in the predictability of the regional eddies.

Luko’s current affiliation: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Caique D. Luko, cdiasluko@ucsd.edu
Save
  • Aluie, H., M. Hecht, and G. K. Vallis, 2018: Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach. J. Phys. Oceanogr., 48, 225244, https://doi.org/10.1175/JPO-D-17-0100.1.

    • Search Google Scholar
    • Export Citation
  • Balwada, D., Q. Xiao, S. Smith, R. Abernathey, and A. R. Gray, 2021: Vertical fluxes conditioned on vorticity and strain reveal submesoscale ventilation. J. Phys. Oceanogr., 51, 28832901, https://doi.org/10.1175/JPO-D-21-0016.1.

    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., J. Gula, and X. Carton, 2021a: The role of curvature in modifying frontal instabilities. Part I: Review of theory and presentation of a nondimensional instability criterion. J. Phys. Oceanogr., 51, 299315, https://doi.org/10.1175/JPO-D-19-0265.1.

    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., J. Gula, and X. Carton, 2021b: The role of curvature in modifying frontal instabilities. Part II: Application of the criterion to curved density fronts at low Richardson numbers. J. Phys. Oceanogr., 51, 317341, https://doi.org/10.1175/JPO-D-20-0258.1.

    • Search Google Scholar
    • Export Citation
  • Calado, L., I. C. A. da Silveira, A. Gangopadhyay, and B. M. de Castro, 2010: Eddy-induced upwelling off Cape São Tomé (22°S, Brazil). Cont. Shelf Res., 30, 11811188, https://doi.org/10.1016/j.csr.2010.03.007.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • da Silveira, I. C. A., L. Calado, M. Cirano, B. M. Castro, J. A. Lima, and A. D. S. Mascarenhas, 2004: On the baroclinic structure of the Brazil Current-Intermediate Western Boundary Current system at 22°–23°S. Geophys. Res. Lett., 31, L14308, https://doi.org/10.1029/2004GL020036.

    • Search Google Scholar
    • Export Citation
  • da Silveira, I. C. A., J. A. M. Lima, A. C. K. Schmidt, W. Ceccopieri, A. Sartori, C. P. F. Franscisco, and R. F. C. Fontes, 2008: Is the meander growth in the Brazil Current system off southeast Brazil due to baroclinic instability? Dyn. Atmos. Oceans, 45, 187207, https://doi.org/10.1016/j.dynatmoce.2008.01.002.

    • Search Google Scholar
    • Export Citation
  • da Silveira, I. C. A., F. Pereira, G. R. Flierl, I. T. Simoes-Sousa, A. Palóczy, M. Borges-Silva, and C. B. Rocha, 2023: The Brazil Current quasi-stationary unstable meanders at 22°S–23°S. Prog. Oceanogr., 210, 102925, https://doi.org/10.1016/j.pocean.2022.102925.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and H. Meng, 1995: The propagation of submesoscale coherent vortices. J. Phys. Oceanogr., 25, 17451770, https://doi.org/10.1175/1520-0485(1995)025<1745:TPOSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, J. Zhu, and C. Dong, 2021: Application of symmetric instability parameterization in the Coastal and Regional Ocean Community Model (CROCO). J. Adv. Model. Earth Syst., 13, e2020MS002302, https://doi.org/10.1029/2020MS002302.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fadeev, E., and Coauthors, 2021: Submesoscale physicochemical dynamics directly shape bacterioplankton community structure in space and time. Limnol. Oceanogr., 66, 29012913, https://doi.org/10.1002/lno.11799.

    • Search Google Scholar
    • Export Citation
  • Fernandez, E., and J. M. Lellouche, 2018: Product user manual for the global ocean physical reanalysis product GLOBAL_REANALYSIS_PHY_001_030. EU Copernicus Marine Service Rep. CMEMS-GLO-PUM-001-030, 25 pp., https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-030.pdf.

  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Freilich, M., and A. Mahadevan, 2021: Coherent pathways for subduction from the surface mixed layer at ocean fronts. J. Geophys. Res. Oceans, 126, e2020JC017042, https://doi.org/10.1029/2020JC017042.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. Molemaker, and J. McWilliams, 2015: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org/10.1002/2015GL063731.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016a: Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic Bight. J. Phys. Oceanogr., 46, 305325, https://doi.org/10.1175/JPO-D-14-0258.1.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016b: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Search Google Scholar
    • Export Citation
  • Gula, J., J. Taylor, A. Shcherbina, and A. Mahadevan, 2022: Submesoscale processes and mixing. Ocean Mixing, Elsevier, 181–214.

  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21, 610619, https://doi.org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Houry, S., E. Dombrowsky, P. De Mey, and J.-F. Minster, 1987: Brunt-Väisälä frequency and Rossby radii in the South Atlantic. J. Phys. Oceanogr., 17, 16191626, https://doi.org/10.1175/1520-0485(1987)017<1619:BVFARR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, https://doi.org/10.1175/JPO-D-14-0200.1.

    • Search Google Scholar
    • Export Citation
  • Lazaneo, C. Z., D. C. Napolitano, I. C. A. da Silveira, A. Tandon, D. G. MacDonald, R. A. Ávila, and P. H. R. Calil, 2020: On the role of turbulent mixing produced by vertical shear between the Brazil Current and the intermediate western boundary current. J. Geophys. Res. Oceans, 125, e2019JC015338, https://doi.org/10.1029/2019JC015338.

    • Search Google Scholar
    • Export Citation
  • Lazaneo, C. Z., P. H. R. Calil, A. Tandon, and I. C. A. da Silveira, 2022: Submesoscale coherent vortices in the South Atlantic Ocean: A pathway for energy dissipation. J. Geophys. Res. Oceans, 127, e2020JC017099, https://doi.org/10.1029/2020JC017099.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

    • Search Google Scholar
    • Export Citation
  • Li, J., and M. Roughan, 2023: Energetics of eddy-mean flow interactions in the East Australian current system. J. Phys. Oceanogr., 53, 595612, https://doi.org/10.1175/JPO-D-22-0128.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., M. Roughan, and C. Kerry, 2022: Drivers of ocean warming in the western boundary currents of the Southern Hemisphere. Nat. Climate Change, 12, 901909, https://doi.org/10.1038/s41558-022-01473-8.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Chao, and J. C. McWilliams, 2006: Computation of the streamfunction and velocity potential for limited and irregular domains. Mon. Wea. Rev., 134, 33843394, https://doi.org/10.1175/MWR3249.1.

    • Search Google Scholar
    • Export Citation
  • Luko, C. D., I. C. A. da Silveira, I. T. Simoes-Sousa, J. M. Araujo, and A. Tandon, 2021: Revisiting the Atlantic South Equatorial Current. J. Geophys. Res. Oceans, 126, e2021JC017387, https://doi.org/10.1029/2021JC017387.

    • Search Google Scholar
    • Export Citation
  • Magalhães, F. C., J. L. L. Azevedo, and L. R. Oliveira, 2017: Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S. J. Geophys. Res. Oceans, 122, 61296146, https://doi.org/10.1002/2016JC012609.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2016: The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci., 8, 161184, https://doi.org/10.1146/annurev-marine-010814-015912.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • McWilliams, J. C., J. Gula, and M. J. Molemaker, 2019: The Gulf Stream North Wall: Ageostrophic circulation and frontogenesis. J. Phys. Oceanogr., 49, 893916, https://doi.org/10.1175/JPO-D-18-0203.1.

    • Search Google Scholar
    • Export Citation
  • Mill, G. N., V. S. da Costa, N. D. Lima, M. Gabioux, L. A. A. Guerra, and A. M. Paiva, 2015: Northward migration of Cape São Tomé rings, Brazil. Cont. Shelf Res., 106, 2737, https://doi.org/10.1016/j.csr.2015.06.010.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Search Google Scholar
    • Export Citation
  • Morvan, M., P. L’Hégaret, X. Carton, J. Gula, C. Vic, C. de Marez, M. Sokolovskiy, and K. Koshel, 2019: The life cycle of submesoscale eddies generated by topographic interactions. Ocean Sci., 15, 15311543, https://doi.org/10.5194/os-15-1531-2019.

    • Search Google Scholar
    • Export Citation
  • Müller, P., J. C. McWilliams, and M. J. Molemaker, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence: Theories, Observations and Models, H. Baumert, J. Simpson, and J. Sundermann, Eds., Cambridge University Press, 397–405.

  • Napolitano, D. C., I. C. A. da Silveira, C. B. Rocha, G. R. Flierl, P. H. R. Calil, and R. P. Martins, 2019: On the steadiness and instability of the intermediate western boundary current between 24° and 18°S. J. Phys. Oceanogr., 49, 31273143, https://doi.org/10.1175/JPO-D-19-0011.1.

    • Search Google Scholar
    • Export Citation
  • Napolitano, D. C., C. B. Rocha, I. C. A. da Silveira, I. T. Simoes-Sousa, and G. R. Flierl, 2021a: Can the intermediate Western Boundary Current recirculation trigger the Vitória eddy formation? Ocean Dyn., 71, 281292, https://doi.org/10.1007/s10236-020-01437-6.

    • Search Google Scholar
    • Export Citation
  • Napolitano, D. C., I. C. A. da Silveira, A. Tandon, and P. H. R. Calil, 2021b: Submesoscale phenomena due to the Brazil Current crossing of the Vitória-Trindade Ridge. J. Geophys. Res. Oceans, 126, e2020JC016731, https://doi.org/10.1029/2020JC016731.

    • Search Google Scholar
    • Export Citation
  • Palóczy, A., I. C. A. da Silveira, B. M. Castro, and L. Calado, 2014: Coastal upwelling off Cape São Tomé (22°S, Brazil): The supporting role of deep ocean processes. Cont. Shelf Res., 89, 3850, https://doi.org/10.1016/j.csr.2013.09.005.

    • Search Google Scholar
    • Export Citation
  • Pereira, F., I. C. A. da Silveira, G. R. Flierl, and A. Tandon, 2019: NPZ response to eddy-induced upwelling in a Brazil Current ring: A theoretical approach. Dyn. Atmos. Oceans, 87, 101096, https://doi.org/10.1016/j.dynatmoce.2019.101096.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., and I. T. Simoes-Sousa, 2022: Compact mesoscale eddies in the South Brazil Bight. Remote Sens., 14, 5781, https://doi.org/10.3390/rs14225781.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., I. C. A. da Silveira, B. M. Castro, and J. A. M. Lima, 2014: Vertical structure, energetics, and dynamics of the Brazil Current System at 22°S–28°S. J. Geophys. Res. Oceans, 119, 5269, https://doi.org/10.1002/2013JC009143.

    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., L. M. Rothstein, and M. Wimbush, 2007: Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: A numerical study. J. Phys. Oceanogr., 37, 1630, https://doi.org/10.1175/JPO2983.1.

    • Search Google Scholar
    • Export Citation
  • Schmid, C., and S. Majumder, 2018: Transport variability of the Brazil Current from observations and a data assimilation model. Ocean Sci., 14, 417436, https://doi.org/10.5194/os-14-417-2018.

    • Search Google Scholar
    • Export Citation
  • Schubert, R., and W. Rath, 2021: reneschubert/keflux: Computing the oceanic kinetic energy flux across spatial scales using coarse-graining (version v.1.0.1). Zenodo, accessed 1 February 2021, https://doi.org/10.5281/zenodo.4486265.

  • Schubert, R., J. Gula, R. J. Greatbatch, B. Baschek, and A. Biastoch, 2020: The submesoscale kinetic energy cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal downscale fluxes. J. Phys. Oceanogr., 50, 25732589, https://doi.org/10.1175/JPO-D-19-0311.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, R., J. Gula, and A. Biastoch, 2021: Submesoscale flows impact Agulhas leakage in ocean simulations. Commun. Earth Environ., 2, 197, https://doi.org/10.1038/s43247-021-00271-y.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Search Google Scholar
    • Export Citation
  • Soufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila, 2016: On effective resolution in ocean models. Ocean Modell., 98, 3650, https://doi.org/10.1016/j.ocemod.2015.12.004.

    • Search Google Scholar
    • Export Citation
  • Soutelino, R. G., I. C. A. da Silveira, A. Gangopadhyay, and J. A. Miranda, 2011: Is the Brazil current eddy-dominated to the North of 20°S? Geophys. Res. Lett., 38, L03607, https://doi.org/10.1029/2010GL046276.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., J. C. McWilliams, M. J. Molemaker, and R. Barkan, 2019: Submesoscale vortical wakes in the lee of topography. J. Phys. Oceanogr., 49, 19491971, https://doi.org/10.1175/JPO-D-18-0042.1.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., and M. England, 1999: On the water masses and mean circulation of the South Atlantic Ocean. J. Geophys. Res., 104, 20 86320 883, https://doi.org/10.1029/1999JC900139.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and A. F. Thompson, 2023: Submesoscale dynamics in the upper ocean. Annu. Rev. Fluid Mech., 55, 103127, https://doi.org/10.1146/annurev-fluid-031422-095147.

    • Search Google Scholar
    • Export Citation
  • Theisel, H., and U. Rauschenbach, 1999: Curvis-visualizing the curvature of vector fields on the internet. Rostocker Inf.-Ber., 23, 105114.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38, https://doi.org/10.1029/177GM04.

  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, E. A. D’Asaro, C. M. Lee, J. M. Klymak, and A. Shcherbina, 2016: Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. J. Phys. Oceanogr., 46, 197217, https://doi.org/10.1175/JPO-D-15-0008.1.

    • Search Google Scholar
    • Export Citation
  • Uchoa, I., I. T. Simoes-Sousa, and I. C. A. da Silveira, 2023: The Brazil Current mesoscale eddies: Altimetry-based characterization and tracking. Deep-Sea Res. I, 192, 103947, https://doi.org/10.1016/j.dsr.2022.103947.

    • Search Google Scholar
    • Export Citation
  • Vic, C., G. Roullet, X. Capet, X. Carton, M. J. Molemaker, and J. Gula, 2015: Eddy-topography interactions and the fate of the Persian Gulf Outflow. J. Geophys. Res. Oceans, 120, 67006717, https://doi.org/10.1002/2015JC011033.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and L. N. Thomas, 2020: Centrifugal and symmetric instability during Ekman adjustment of the bottom boundary layer. J. Phys. Oceanogr., 50, 17931812, https://doi.org/10.1175/JPO-D-20-0027.1.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr., 48, 25712592, https://doi.org/10.1175/JPO-D-17-0264.1.

    • Search Google Scholar
    • Export Citation
  • Yan, X., D. Kang, E. N. Curchitser, and C. Pang, 2019: Energetics of eddy–mean flow interactions along the western boundary currents in the North Pacific. J. Phys. Oceanogr., 49, 789810, https://doi.org/10.1175/JPO-D-18-0201.1.

    • Search Google Scholar
    • Export Citation
  • Yan, X., D. Kang, C. Pang, L. Zhang, and H. Liu, 2022: Energetics analysis of the eddy–Kuroshio interaction east of Taiwan. J. Phys. Oceanogr., 52, 647664, https://doi.org/10.1175/JPO-D-21-0198.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 972 972 55
Full Text Views 334 334 5
PDF Downloads 408 408 8