Effect of Wave Directions on Orientation and Magnitude of Surface Wind Stress under Typhoon Megi (2010)

Je-Yuan Hsu aInstitute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Je-Yuan Hsu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4229-2633
Restricted access

Abstract

The relationship between the wind-wave spectrum and surface wind stress τ in tropical cyclones, especially for the misalignment |ϕ| between the wind and τ, was investigated using data from three Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats deployed in Super Typhoon Megi (2010). The floats measured τ by integrating downward momentum flux in the ocean and, in a recent development, directional spectra of surface waves. The wind was captured by aircraft surveys. At wind speeds from 25 to 40 m s−1, the |ϕ| increased with the increasing angle between the wind and dominant waves. The |ϕ| was small near the eyewall, where wave energy concentrated in a narrow frequency band. At the location far away from the eyewall, where most spectra were bimodal in directions with similar frequencies, the stress direction might be similar to the high-frequency waves. The misalignment between the wind and propagating swell might affect the growth and directional spreading of wind waves under tropical cyclones. The resulting wave breaking might then release wave momentum into the ocean as most stress clockwise from the wind direction. C, the downwind drag coefficient, increased with increasing inverse wave age of dominant waves. |C|, the magnitude of the crosswind drag coefficient, was significant when low-frequency waves deviated from the wind by more than 90°. The wave directions are used in the inverse wave age for scaling drag coefficients. The new parameterization based on wave dynamics can be useful for improving the prediction of wind stress curl under storms.

Significance Statement

Tropical cyclones can impact the maximum sea surface temperature cooling through the curl of surface wind stress τ, which causes divergence under the storm eye. To investigate the effect of surface waves on τ, measurements of downward momentum flux and surface waves from three EM-APEX floats deployed under Typhoon Megi in 2010 are used. The inverse wave age involving wind forcing on the wave directions of dominant waves and swells can significantly influence the momentum transfer efficiency in the downwind and crosswind directions, respectively. That is, the propagating swell under storms should play a crucial role in the downward momentum flux during its interaction with high-frequency waves and wind. Incorporating wave directions to parameterize the magnitude and orientation of τ will improve future models’ ability to predict wind stress curl and thereby the heat fluxes to storm intensification.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Je-Yuan Hsu, jyahsu@ntu.edu.tw

Abstract

The relationship between the wind-wave spectrum and surface wind stress τ in tropical cyclones, especially for the misalignment |ϕ| between the wind and τ, was investigated using data from three Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats deployed in Super Typhoon Megi (2010). The floats measured τ by integrating downward momentum flux in the ocean and, in a recent development, directional spectra of surface waves. The wind was captured by aircraft surveys. At wind speeds from 25 to 40 m s−1, the |ϕ| increased with the increasing angle between the wind and dominant waves. The |ϕ| was small near the eyewall, where wave energy concentrated in a narrow frequency band. At the location far away from the eyewall, where most spectra were bimodal in directions with similar frequencies, the stress direction might be similar to the high-frequency waves. The misalignment between the wind and propagating swell might affect the growth and directional spreading of wind waves under tropical cyclones. The resulting wave breaking might then release wave momentum into the ocean as most stress clockwise from the wind direction. C, the downwind drag coefficient, increased with increasing inverse wave age of dominant waves. |C|, the magnitude of the crosswind drag coefficient, was significant when low-frequency waves deviated from the wind by more than 90°. The wave directions are used in the inverse wave age for scaling drag coefficients. The new parameterization based on wave dynamics can be useful for improving the prediction of wind stress curl under storms.

Significance Statement

Tropical cyclones can impact the maximum sea surface temperature cooling through the curl of surface wind stress τ, which causes divergence under the storm eye. To investigate the effect of surface waves on τ, measurements of downward momentum flux and surface waves from three EM-APEX floats deployed under Typhoon Megi in 2010 are used. The inverse wave age involving wind forcing on the wave directions of dominant waves and swells can significantly influence the momentum transfer efficiency in the downwind and crosswind directions, respectively. That is, the propagating swell under storms should play a crucial role in the downward momentum flux during its interaction with high-frequency waves and wind. Incorporating wave directions to parameterize the magnitude and orientation of τ will improve future models’ ability to predict wind stress curl and thereby the heat fluxes to storm intensification.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Je-Yuan Hsu, jyahsu@ntu.edu.tw
Save
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Bryant, K. M., and M. Akbar, 2016: An exploration of wind stress calculation techniques in hurricane storm surge modeling. J. Mar. Sci. Eng., 4, 58, https://doi.org/10.3390/jmse4030058.

    • Search Google Scholar
    • Export Citation
  • Chen, S., F. Qiao, W. Jiang, J. Guo, and D. Dai, 2019: Impact of surface waves on wind stress under low to moderate wind conditions. J. Phys. Oceanogr., 49, 20172028, https://doi.org/10.1175/JPO-D-18-0266.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind-wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 31983215, https://doi.org/10.1175/JAS-D-12-0157.1.

    • Search Google Scholar
    • Export Citation
  • Collins, C. O., III, H. Potter, B. Lund, H. Tamura, and H. C. Graber, 2018: Directional wave spectra observed during intense tropical cyclones. J. Geophys. Res. Oceans, 123, 773793, https://doi.org/10.1002/2017JC012943.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 2015: Surface wave measurements from subsurface floats. J. Atmos. Oceanic Technol., 32, 816827, https://doi.org/10.1175/JTECH-D-14-00180.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 14051418, https://doi.org/10.1175/BAMS-D-12-00104.1.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., W. M. Drennan, and K. B. Katsaros, 1997: The air–sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27, 20872099, https://doi.org/10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, https://doi.org/10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, and M. A. Donelan, 1999: Evidence for the effects of swell and unsteady winds on marine wind stress. J. Phys. Oceanogr., 29, 18531864, https://doi.org/10.1175/1520-0485(1999)029<1853:EFTEOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, https://doi.org/10.1029/2000JC000715.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., H. Kawamura, and Y. Toba, 1993: Bursting phenomena in the turbulent boundary layer beneath the laboratory wind-wave surface. Natural Physical Sources of Underwater Sound, B. R. Kerman, Ed., Springer, 263–276, https://doi.org/10.1007/978-94-011-1626-8_21.

  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., C. Zhang, C. Meinig, J. A. Zhang, and D. Zhang, 2022: An unprecedented view inside a hurricane. Eos, 103, https://doi.org/10.1029/2022EO220228.

    • Search Google Scholar
    • Export Citation
  • Fontaine, E., 2013: A theoretical explanation of the fetch- and duration-limited laws. J. Phys. Oceanogr., 43, 233247, https://doi.org/10.1175/JPO-D-11-0190.1.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., 1988: Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea. J. Geophys. Res., 93, 82158220, https://doi.org/10.1029/JC093iC07p08215.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., K. B. Katsaros, and K. Richter, 1986: Variation of the drag coefficient and its dependence on sea state. J. Geophys. Res., 91, 76677679, https://doi.org/10.1029/JC091iC06p07667.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711, https://doi.org/10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, https://doi.org/10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grare, L., L. Lenain, and W. K. Melville, 2013: Wave-coherent airflow and critical layers over ocean waves. J. Phys. Oceanogr., 43, 21562172, https://doi.org/10.1175/JPO-D-13-056.1.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Hsu, J.-Y., 2021: Observing surface wave directional spectra under Typhoon Megi (2010) using subsurface EM-APEX Floats. J. Atmos. Oceanic Technol., 38, 19491966, https://doi.org/10.1175/JTECH-D-20-0210.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, J.-Y., R.-C. Lien, E. A. D’Asaro, and T. B. Sanford, 2017: Estimates of surface wind stress and drag coefficients in Typhoon Megi. J. Phys. Oceanogr., 47, 545565, https://doi.org/10.1175/JPO-D-16-0069.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, J.-Y., R.-C. Lien, E. A. D’Asaro, and T. B. Sanford, 2018: Estimates of surface waves using subsurface EM-APEX Floats under Typhoon Fanapi 2010. J. Atmos. Oceanic Technol., 35, 10531075, https://doi.org/10.1175/JTECH-D-17-0121.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, J.-Y., R.-C. Lien, E. A. D’Asaro, and T. B. Sanford, 2019: Scaling of drag coefficients under five tropical cyclones. Geophys. Res. Lett., 46, 33493358, https://doi.org/10.1029/2018GL081574.

    • Search Google Scholar
    • Export Citation
  • Hu, K., and Q. Chen, 2011: Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophys. Res. Lett., 38, L19608, https://doi.org/10.1029/2011GL049145.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2001: Directional distributions and mean square slopes in the equilibrium and saturation ranges of the wave spectrum. J. Phys. Oceanogr., 31, 13461360, https://doi.org/10.1175/1520-0485(2001)031<1346:DDAMSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and Y. Fan, 2018: Low-frequency mean square slopes and dominant wave spectral properties: Toward tropical cyclone remote sensing. IEEE Trans. Geosci. Remote Sens., 56, 73597368, https://doi.org/10.1109/TGRS.2018.2850969.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., Y. Fan, F. J. Ocampo-Torres, and H. García-Nava, 2017: Ocean surface wave spectra inside tropical cyclones. J. Phys. Oceanogr., 47, 23932417, https://doi.org/10.1175/JPO-D-17-0066.1.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, https://doi.org/10.1126/science.1136466.

    • Search Google Scholar
    • Export Citation
  • Jones, I. S. F., and Y. Toba, 2012: Wind Stress over the Ocean. Cambridge University Press, 307 pp.

  • Kleiss, J. M., and M. K. Melville, 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604, https://doi.org/10.1175/2010JPO4383.1.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V., B. Chapron, and V. Makin, 2014: Impact of wind waves on the air-sea fluxes: A coupled model. J. Geophys. Res. Oceans, 119, 12171236, https://doi.org/10.1002/2013JC009412.

    • Search Google Scholar
    • Export Citation
  • Kuik, A. J., G. P. van Vledder, and L. H. Holthuijsen, 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18, 10201034, https://doi.org/10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., J. B. Mickett, and J. B. Girton, 2021: Destratification and restratification of the spring surface boundary layer in a subtropical front. J. Phys. Oceanogr., 51, 28612882, https://doi.org/10.1175/JPO-D-21-0003.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenain, L., and W. K. Melville, 2014: Autonomous surface vehicle measurements of the ocean’s response to Tropical Cyclone Freda. J. Atmos. Oceanic Technol., 31, 21692190, https://doi.org/10.1175/JTECH-D-14-00012.1.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., and R. J. Rapp, 1985: Momentum flux in breaking waves. Nature, 317, 514516, https://doi.org/10.1038/317514a0.

  • Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185204, https://doi.org/10.1017/S0022112057000567.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci., 61, 23342348, https://doi.org/10.1175/1520-0469(2004)061<2334:EOSWOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oost, W. A., G. J. Komen, C. M. J. Jacobs, and C. Van Oort, 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409438, https://doi.org/10.1023/A:1014913624535.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1957: On the generation of waves by turbulent wind. J. Fluid Mech., 2, 417445, https://doi.org/10.1017/S0022112057000233.

    • Search Google Scholar
    • Export Citation
  • Potter, H., C. O. Collins, W. M. Drennan, and H. C. Graber, 2015: Observations of wind stress direction during Typhoon Chaba (2010). Geophys. Res. Lett., 42, 98989905, https://doi.org/10.1002/2015GL065173.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., J. A. Knaff, and C. R. Sampson, 2021: Uncertainty of tropical cyclone wind radii on sea surface temperature cooling. J. Geophys. Res. Atmos., 126, e2021JD034857, https://doi.org/10.1029/2021JD034857.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean under hurricane winds. J. Geophys. Res. Oceans, 119, 3051, https://doi.org/10.1002/2013JC009289.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., I. Ginis, T. Hara, B. Thomas, T. Kukulka, and D. Wang, 2016: Impact of sea-state-dependent Langmuir turbulence on the ocean response to a tropical cyclone. Mon. Wea. Rev., 144, 45694590, https://doi.org/10.1175/MWR-D-16-0074.1.

    • Search Google Scholar
    • Export Citation
  • Richter, D. H., C. Wainwright, D. P. Stern, G. H. Bryan, and D. Chavas, 2021: Potential low bias in high-wind drag coefficient inferred from dropsonde data in hurricane. J. Atmos. Sci., 78, 23392352, https://doi.org/10.1175/JAS-D-20-0390.1.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. H. Dunlap, J. A. Carlson, D. C. Webb, and J. B. Girton, 2005: Autonomous velocity and density profiler: EM-APEX. Proc. IEEE/OES Eighth Working Conf. on Current Measurement Technology, Southampton, United Kingdom, IEEE, 152–156, https://doi.org/10.1109/CCM.2005.1506361.

  • Sanford, T. B., J. F. Price, and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, https://doi.org/10.1175/2010JPO4313.1.

    • Search Google Scholar
    • Export Citation
  • Takagaki, N., S. Komori, N. Suzuki, K. Iwano, T. Kuramoto, S. Shimada, R. Kurose, and K. Takahashi, 2012: Strong correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind speeds. Geophys. Res. Lett., 39, L23604, https://doi.org/10.1029/2012GL053988.

    • Search Google Scholar
    • Export Citation
  • Tamizi, A., and I. R. Young, 2020: The spatial distribution of ocean waves in tropical cyclones. J. Phys. Oceanogr., 50, 21232139, https://doi.org/10.1175/JPO-D-20-0020.1.

    • Search Google Scholar
    • Export Citation
  • Tamizi, A., J.-H. Alves, and I. R. Young, 2021: The physics of ocean wave evolution within tropical cyclones. J. Phys. Oceanogr., 51, 23732388, https://doi.org/10.1175/JPO-D-21-0005.1.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., J. B. Girton, R. Jha, and A. Trapani, 2018: Measurements of directional wave spectra and wind stress from a wave glider autonomous surface vehicle. J. Atmos. Oceanic Technol., 35, 347363, https://doi.org/10.1175/JTECH-D-17-0091.1.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518, https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, https://doi.org/10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1995: The determination of confidence limits associated with estimates of the spectral peak frequency. Ocean Eng., 22, 669686, https://doi.org/10.1016/0029-8018(95)00002-3.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2003: A review of the sea state generated by hurricanes. Mar. Struct., 16, 201218, https://doi.org/10.1016/S0951-8339(02)00054-0.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2006: Directional spectra of hurricane wind-waves. J. Geophys. Res., 111, C08020, https://doi.org/10.1029/2006JC003540.

  • Young, I. R., and J. Vinoth, 2013: An ‘extended fetch’ model for the spatial distribution of tropical cyclone wind-waves as observed by altimeter. Ocean Eng., 70, 1424, https://doi.org/10.1016/j.oceaneng.2013.05.015.

    • Search Google Scholar
    • Export Citation
  • Zhang, F. W., W. M. Drennan, B. K. Haus, and H. C. Graber, 2009: On wind-wave-current interactions during the Shoaling Waves Experiment. J. Geophys. Res., 114, C01018, https://doi.org/10.1029/2008JC004998.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., T. Hara, I. Ginis, E. D’Asaro, J.-Y. Hsu, and B. G. Reichl, 2022: Drag coefficient and its sea state dependence under tropical cyclones. J. Phys. Oceanogr., 52, 14471470, https://doi.org/10.1175/JPO-D-21-0246.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 579 420 13
Full Text Views 219 172 13
PDF Downloads 252 193 5