Sources of Drag in Estuarine Meanders: Momentum Redistribution, Bottom Stress Enhancement, and Bend-Scale Form Drag

Tong Bo aApplied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
bMIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Massachusetts

Search for other papers by Tong Bo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6030-0561
,
David K. Ralston aApplied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by David K. Ralston in
Current site
Google Scholar
PubMed
Close
, and
W. Rockwell Geyer aApplied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by W. Rockwell Geyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Curvature can create secondary circulation and flow separation in tidal channels, and both have important consequences for the along-channel momentum budget. The North River is a sinuous estuary where drag is observed to be higher than expected, and a numerical model is used to investigate the influence of curvature-induced processes on the momentum distribution and drag. The hydrodynamic drag is greatly increased in channel bends compared to that for straight channel flows. Drag coefficients are calculated using several approaches to identify the different factors contributing to the drag increase. Flow separation creates low-pressure recirculation zones on the lee side of the bends and results in form drag. Form drag is the dominant source of the increase in total drag during flood tides and is less of a factor during ebb tides. During both floods and ebbs, curvature-induced secondary circulation transports higher-momentum fluid to the lower water column through vertical and lateral advection. Consequently, the streamwise velocity profile deviates from the classic log profile and vertical shear becomes more concentrated near the bed. This redistribution by the lateral circulation causes an overall increase in bottom friction and contributes to the increased drag. Additionally, spatial variations in the depth-averaged velocity field due to the curvature-induced flow are nonlinearly correlated with the bathymetric structure, leading to increased bottom friction. In addition to affecting the tidal flow, the redistributed momentum and altered bottom shear stress have clear implications for channel morphodynamics.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tong Bo, tongbo@mit.edu

Abstract

Curvature can create secondary circulation and flow separation in tidal channels, and both have important consequences for the along-channel momentum budget. The North River is a sinuous estuary where drag is observed to be higher than expected, and a numerical model is used to investigate the influence of curvature-induced processes on the momentum distribution and drag. The hydrodynamic drag is greatly increased in channel bends compared to that for straight channel flows. Drag coefficients are calculated using several approaches to identify the different factors contributing to the drag increase. Flow separation creates low-pressure recirculation zones on the lee side of the bends and results in form drag. Form drag is the dominant source of the increase in total drag during flood tides and is less of a factor during ebb tides. During both floods and ebbs, curvature-induced secondary circulation transports higher-momentum fluid to the lower water column through vertical and lateral advection. Consequently, the streamwise velocity profile deviates from the classic log profile and vertical shear becomes more concentrated near the bed. This redistribution by the lateral circulation causes an overall increase in bottom friction and contributes to the increased drag. Additionally, spatial variations in the depth-averaged velocity field due to the curvature-induced flow are nonlinearly correlated with the bathymetric structure, leading to increased bottom friction. In addition to affecting the tidal flow, the redistributed momentum and altered bottom shear stress have clear implications for channel morphodynamics.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tong Bo, tongbo@mit.edu

Supplementary Materials

    • Supplemental Materials (PDF 5.1454 MB)
Save
  • Arcement, G. J., and V. R. Schneider, 1989: Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. USGS Water-Supply Paper 2339, 44 pp., https://pubs.usgs.gov/wsp/2339/report.pdf.

  • Batchelor, G. K., 2000: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Blanckaert, K., 2010: Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour. Res., 46, W09506, https://doi.org/10.1029/2009WR008303.

    • Search Google Scholar
    • Export Citation
  • Blanckaert, K., 2015: Flow separation at convex banks in open channels. J. Fluid Mech., 779, 432467, https://doi.org/10.1017/jfm.2015.397.

    • Search Google Scholar
    • Export Citation
  • Blanckaert, K., and H. J. de Vriend, 2003: Nonlinear modeling of mean flow redistribution in curved open channels. Water Resour. Res., 39, 1375, https://doi.org/10.1029/2003WR002068.

    • Search Google Scholar
    • Export Citation
  • Blanckaert, K., and W. H. Graf, 2004: Momentum transport in sharp open-channel bends. J. Hydraul. Eng., 130, 186198, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(186).

    • Search Google Scholar
    • Export Citation
  • Blanckaert, K., and H. De Vriend, 2010: Meander dynamics: A nonlinear model without curvature restrictions for flow in open-channel bends. J. Geophys. Res., 115, F04011, https://doi.org/10.1029/2009JF001301.

    • Search Google Scholar
    • Export Citation
  • Blanckaert, K., M. G. Kleinhans, S. J. McLelland, W. S. Uijttewaal, B. J. Murphy, A. van de Kruijs, D. R. Parsons, and Q. Chen, 2013: Flow separation at the inner (convex) and outer (concave) banks of constant-width and widening open-channel bends. Earth Surf. Processes Landforms, 38, 696716, https://doi.org/10.1002/esp.3324.

    • Search Google Scholar
    • Export Citation
  • Bo, T., and D. K. Ralston, 2020: Flow separation and increased drag coefficient in estuarine channels with curvature. J. Geophys. Res. Oceans, 125, e2020JC016267, https://doi.org/10.1029/2020JC016267.

    • Search Google Scholar
    • Export Citation
  • Bo, T., and D. K. Ralston, 2022: Frontogenesis, mixing, and stratification in estuarine channels with curvature. J. Phys. Oceanogr., 52, 13331350, https://doi.org/10.1175/JPO-D-21-0298.1.

    • Search Google Scholar
    • Export Citation
  • Bo, T., D. K. Ralston, W. M. Kranenburg, W. R. Geyer, and P. Traykovski, 2021: High and variable drag in a sinuous estuary with intermittent stratification. J. Geophys. Res. Oceans, 126, e2021JC017327, https://doi.org/10.1029/2021JC017327.

    • Search Google Scholar
    • Export Citation
  • Bricker, J. D., S. Inagaki, and S. G. Monismith, 2005: Bed drag coefficient variability under wind waves in a tidal estuary. J. Hydraul. Eng., 131, 497508, https://doi.org/10.1061/(ASCE)0733-9429(2005)131:6(497).

    • Search Google Scholar
    • Export Citation
  • Chang, H. H., 1983: Energy expenditure in curved open channels. J. Hydraul. Eng., 109, 10121022, https://doi.org/10.1061/(ASCE)0733-9429(1983)109:7(1012).

    • Search Google Scholar
    • Export Citation
  • Chang, H. H., 1984: Variation of flow resistance through curved channels. J. Hydraul. Eng., 110, 17721782, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1772).

    • Search Google Scholar
    • Export Citation
  • Chant, R. J., and R. E. Wilson, 1997: Secondary circulation in a highly stratified estuary. J. Geophys. Res., 102, 23 20723 215, https://doi.org/10.1029/97JC00685.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1959: Open-Channel Hydraulics. McGraw-Hill, 680 pp.

  • Coles, D., 1956: The law of the wake in the turbulent boundary layer. J. Fluid Mech., 1, 191226, https://doi.org/10.1017/S0022112056000135.

    • Search Google Scholar
    • Export Citation
  • Dietrich, W. E., and J. D. Smith, 1983: Influence of the point bar on flow through curved channels. Water Resour. Res., 19, 11731192, https://doi.org/10.1029/WR019i005p01173.

    • Search Google Scholar
    • Export Citation
  • Dietrich, W. E., and P. Whiting, 1989: Boundary shear stress and sediment transport in river meanders of sand and gravel. River Meandering, Water Resources Monogr., Vol. 12, Amer. Geophys. Union, 1–50, https://doi.org/10.1029/WM012p0001.

  • Einstein, H. A., and J. A. Harder, 1954: Velocity distribution and the boundary layer at channel bends. Eos, Trans. Amer. Geophys. Union, 35, 114120, https://doi.org/10.1029/TR035i001p00114.

    • Search Google Scholar
    • Export Citation
  • Fagherazzi, S., E. J. Gabet, and D. J. Furbish, 2004: The effect of bidirectional flow on tidal channel planforms. Earth Surf. Processes Landforms, 29, 295309, https://doi.org/10.1002/esp.1016.

    • Search Google Scholar
    • Export Citation
  • Ferguson, R. I., D. R. Parsons, S. N. Lane, and R. J. Hardy, 2003: Flow in meander bends with recirculation at the inner bank. Water Resour. Res., 39, 1322, https://doi.org/10.1029/2003WR001965.

    • Search Google Scholar
    • Export Citation
  • Finotello, A., M. Ghinassi, L. Carniello, E. Belluco, M. Pivato, L. Tommasini, and A. D’Alpaos, 2020: Three-dimensional flow structures and morphodynamic evolution of microtidal meandering channels. Water Resour. Res., 56, e2020WR027822, https://doi.org/10.1029/2020WR027822.

    • Search Google Scholar
    • Export Citation
  • Fong, D. A., S. G. Monismith, M. T. Stacey, and J. R. Burau, 2009: Turbulent stresses and secondary currents in a tidal-forced channel with significant curvature and asymmetric bed forms. J. Hydraul. Eng., 135, 198208, https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(198).

    • Search Google Scholar
    • Export Citation
  • Francis, H., and P. Traykovski, 2021: Development of a highly portable unmanned surface vehicle for surf zone bathymetric surveying. J. Coastal Res., 37, 933945, https://doi.org/10.2112/JCOASTRES-D-20-00143.1.

    • Search Google Scholar
    • Export Citation
  • Friedrichs, C. T., and L. D. Wright, 1997: Sensitivity of bottom stress and bottom roughness estimates to density stratification, Eckernförde Bay, southern Baltic Sea. J. Geophys. Res., 102, 57215732, https://doi.org/10.1029/96JC03550.

    • Search Google Scholar
    • Export Citation
  • Frothingham, K. M., and B. L. Rhoads, 2003: Three-dimensional flow structure and channel change in an asymmetrical compound meander loop, Embarras River, Illinois. Earth Surf. Processes Landforms, 28, 625644, https://doi.org/10.1002/esp.471.

    • Search Google Scholar
    • Export Citation
  • Garcia, A. M. P., W. R. Geyer, and N. Randall, 2022: Exchange flows in tributary creeks enhance dispersion by tidal trapping. Estuaries Coasts, 45, 363381, https://doi.org/10.1007/s12237-021-00969-4.

    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., 1993: Three-dimensional tidal flow around headlands. J. Geophys. Res., 98, 955966, https://doi.org/10.1029/92JC02270.

  • Geyer, W. R., J. H. Trowbridge, and M. M. Bowen, 2000: The dynamics of a partially mixed estuary. J. Phys. Oceanogr., 30, 20352048, https://doi.org/10.1175/1520-0485(2000)030<2035:TDOAPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gross, E. S., J. R. Koseff, and S. G. Monismith, 1999: Three-dimensional salinity simulations of south San Francisco Bay. J. Hydraul. Eng., 125, 11991209, https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1199).

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys., 227, 35953624, https://doi.org/10.1016/j.jcp.2007.06.016.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and D. R. Ohlsen, 1994: Frictionally modified rotating hydraulic channel exchange and ocean outflows. J. Phys. Oceanogr., 24, 6678, https://doi.org/10.1175/1520-0485(1994)024<0066:FMRHCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalkwijk, J. P. T., and R. Booij, 1986: Adaptation of secondary flow in nearly-horizontal flow. J. Hydraul. Res., 24, 1937, https://doi.org/10.1080/00221688609499330.

    • Search Google Scholar
    • Export Citation
  • Kimball, P., and Coauthors, 2014: The WHOI Jetyak: An autonomous surface vehicle for oceanographic research in shallow or dangerous waters. 2014 IEEE/OES Autonomous Underwater Vehicles (AUV), Oxford, MS, Institute of Electrical and Electronics Engineers, 1–7, https://doi.org/10.1109/AUV.2014.7054430.

  • Kranenburg, W. M., W. R. Geyer, A. M. P. Garcia, and D. K. Ralston, 2019: Reversed lateral circulation in a sharp estuarine bend with weak stratification. J. Phys. Oceanogr., 49, 16191637, https://doi.org/10.1175/JPO-D-18-0175.1.

    • Search Google Scholar
    • Export Citation
  • Lacy, J. R., and S. G. Monismith, 2001: Secondary currents in a curved, stratified, estuarine channel. J. Geophys. Res., 106, 31 28331 302, https://doi.org/10.1029/2000JC000606.

    • Search Google Scholar
    • Export Citation
  • Lacy, J. R., M. T. Stacey, J. R. Burau, and S. G. Monismith, 2003: Interaction of lateral baroclinic forcing and turbulence in an estuary. J. Geophys. Res., 108, 3089, https://doi.org/10.1029/2002JC001392.

    • Search Google Scholar
    • Export Citation
  • Langbein, W. B., and L. B. Leopold, 1970: River meanders and the theory of minimum variance. Rivers and River Terraces, G. H. Dury, Ed., Springer, 238–263.

  • Leeder, M. R., and P. H. Bridges, 1975: Flow separation in meander bends. Nature, 253, 338339, https://doi.org/10.1038/253338a0.

  • Lentz, S. J., K. A. Davis, J. H. Churchill, and T. M. DeCarlo, 2017: Coral reef drag coefficients–water depth dependence. J. Phys. Oceanogr., 47, 10611075, https://doi.org/10.1175/JPO-D-16-0248.1.

    • Search Google Scholar
    • Export Citation
  • Leopold, L. B., and M. G. Wolman, 1960: River meanders. Geol. Soc. Amer. Bull., 71, 769793, https://doi.org/10.1130/0016-7606(1960)71[769:RM]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leopold, L. B., R. A. Bagnold, M. G. Wolman, and L. M. Brush, 1960: Flow resistance in sinuous or irregular channels. USGS Professional Paper 282-D, 33 pp., https://pubs.usgs.gov/pp/0282d/report.pdf.

  • Lerczak, J. A., and W. R. Geyer, 2004: Modeling the lateral circulation in straight, stratified estuaries. J. Phys. Oceanogr., 34, 14101428, https://doi.org/10.1175/1520-0485(2004)034<1410:MTLCIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marani, M., S. Lanzoni, D. Zandolin, G. Seminara, and A. Rinaldo, 2002: Tidal meanders. Water Resour. Res., 38, 1225, https://doi.org/10.1029/2001WR000404.

    • Search Google Scholar
    • Export Citation
  • McCabe, R. M., P. MacCready, and G. Pawlak, 2006: Form drag due to flow separation at a headland. J. Phys. Oceanogr., 36, 21362152, https://doi.org/10.1175/JPO2966.1.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1971: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 1, Dover, 784 pp.

  • Mukai, A. Y., J. J. Westerink, R. A. Luettich Jr., and D. Mark, 2002: Eastcoast 2001, a tidal constituent database for western North Atlantic, Gulf of Mexico, and Caribbean Sea. Tech. Rep. ERDC/CHL TR-02-24, 196 pp., https://apps.dtic.mil/sti/pdfs/ADA408733.pdf.

  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nanson, R. A., 2010: Flow fields in tightly curving meander bends of low width-depth ratio. Earth Surf. Processes Landforms, 35, 119135, https://doi.org/10.1002/esp.1878.

    • Search Google Scholar
    • Export Citation
  • Nepf, H., 1999: Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res., 35, 479489, https://doi.org/10.1029/1998WR900069.

    • Search Google Scholar
    • Export Citation
  • Nidzieko, N. J., J. L. Hench, and S. G. Monismith, 2009: Lateral circulation in well-mixed and stratified estuarine flows with curvature. J. Phys. Oceanogr., 39, 831851, https://doi.org/10.1175/2008JPO4017.1.

    • Search Google Scholar
    • Export Citation
  • Nunes, R. A., and J. H. Simpson, 1985: Axial convergence in a well-mixed estuary. Estuarine Coastal Shelf Sci., 20, 637649, https://doi.org/10.1016/0272-7714(85)90112-X.

    • Search Google Scholar
    • Export Citation
  • Ortals, C., O. Cordero, A. Valle-Levinson, and C. Angelini, 2021: Flows, transport, and effective drag in intertidal salt marsh creeks. J. Geophys. Res. Oceans, 126, e2021JC017357, https://doi.org/10.1029/2021JC017357.

    • Search Google Scholar
    • Export Citation
  • Ott, M. W., and C. Garrett, 1998: Frictional estuarine flow in Juan de Fuca Strait, with implications for secondary circulation. J. Geophys. Res., 103, 156 5715 666, https://doi.org/10.1029/98JC00019.

    • Search Google Scholar
    • Export Citation
  • Ottevanger, W., K. Blanckaert, and W. S. J. Uijttewaal, 2012: Processes governing the flow redistribution in sharp river bends. Geomorphology, 163–164, 4555, https://doi.org/10.1016/j.geomorph.2011.04.049.

    • Search Google Scholar
    • Export Citation
  • Qian, S., J. Zhang, D. Wang, and Y. P. Wang, 2022: Observational study on drag reduction of continental-shelf bottom boundary layer. Phys. Fluids, 34, 055127, https://doi.org/10.1063/5.0091335.

    • Search Google Scholar
    • Export Citation
  • Ralston, D. K., G. W. Cowles, W. R. Geyer, and R. C. Holleman, 2017: Turbulent and numerical mixing in a salt wedge estuary: Dependence on grid resolution, bottom roughness, and turbulence closure. J. Geophys. Res. Oceans, 122, 692712, https://doi.org/10.1002/2016JC011738.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. S., S. A. Maticka, V. Chirayath, C. B. Woodson, J. J. Alonso, and S. G. Monismith, 2018: Connecting flow over complex terrain to hydrodynamic roughness on a coral reef. J. Phys. Oceanogr., 48, 15671587, https://doi.org/10.1175/JPO-D-18-0013.1.

    • Search Google Scholar
    • Export Citation
  • Schnauder, I., and A. N. Sukhodolov, 2012: Flow in a tightly curving meander bend: Effects of seasonal changes in aquatic macrophyte cover. Earth Surf. Processes Landforms, 37, 11421157, https://doi.org/10.1002/esp.3234.

    • Search Google Scholar
    • Export Citation
  • Seim, H., J. Blanton, and S. Elston, 2006: Tidal circulation and energy dissipation in a shallow, sinuous estuary. Ocean Dyn., 56, 360375, https://doi.org/10.1007/s10236-006-0078-x.

    • Search Google Scholar
    • Export Citation
  • Seim, H. E., and M. C. Gregg, 1997: The importance of aspiration and channel curvature in producing strong vertical mixing over a sill. J. Geophys. Res., 102, 34513472, https://doi.org/10.1029/96JC03415.

    • Search Google Scholar
    • Export Citation
  • Seim, H. E., J. O. Blanton, and T. Gross, 2002: Direct stress measurements in a shallow, sinuous estuary. Cont. Shelf Res., 22, 15651578, https://doi.org/10.1016/S0278-4343(02)00029-8.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Signell, R. P., and W. R. Geyer, 1991: Transient eddy formation around headlands. J. Geophys. Res., 96, 25612575, https://doi.org/10.1029/90JC02029.

    • Search Google Scholar
    • Export Citation
  • Soulsby, R., 1990: Tidal-current boundary layers. Ocean Engineering Science, B. L. Méhauté and D. M. Hanes, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 9, John Wiley and Sons, 523–566.

  • Stacey, M. T., and D. K. Ralston, 2005: The scaling and structure of the estuarine bottom boundary layer. J. Phys. Oceanogr., 35, 5571, https://doi.org/10.1175/JPO-2672.1.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., 1877: V. On the origin of windings of rivers in alluvial plains, with remarks on the flow of water round bends in pipes. Proc. Roy. Soc. London, 25, 58, https://doi.org/10.1098/rspl.1876.0004.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., and S. J. Lentz, 2018: The bottom boundary layer. Annu. Rev. Mar. Sci., 10, 397420, https://doi.org/10.1146/annurev-marine-121916-063351.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., and J. S. Turner, 1979: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235265, https://doi.org/10.1357/002224003322005087.

    • Search Google Scholar
    • Export Citation
  • Valle-Levinson, A., 2011: Large estuaries (effects of rotation). Treatise on Estuarine and Coastal Science, Vol. 2, E. Wolanski and D. McLusky, Eds., Academic Press, 123–139, https://doi.org/10.1016/B978-0-12-374711-2.00208-4.

  • Vermeulen, B., A. Hoitink, and R. J. Labeur, 2015: Flow structure caused by a local cross-sectional area increase and curvature in a sharp river bend. J. Geophys. Res. Earth Surf., 120, 17711783, https://doi.org/10.1002/2014JF003334.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango, 2008: Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci., 34, 12841306, https://doi.org/10.1016/j.cageo.2008.02.012.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Modell., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Search Google Scholar
    • Export Citation
  • Warner, S. J., P. MacCready, J. N. Moum, and J. D. Nash, 2013: Measurement of tidal form drag using seafloor pressure sensors. J. Phys. Oceanogr., 43, 11501172, https://doi.org/10.1175/JPO-D-12-0163.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 925 925 29
Full Text Views 375 375 11
PDF Downloads 352 352 8