A Finite-Time Ensemble Method for Mixed Layer Model Comparison

Leah Johnson aEarth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Leah Johnson in
Current site
Google Scholar
PubMed
Close
,
Baylor Fox-Kemper aEarth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Baylor Fox-Kemper in
Current site
Google Scholar
PubMed
Close
,
Qing Li bEarth, Ocean and Atmospheric Sciences Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China

Search for other papers by Qing Li in
Current site
Google Scholar
PubMed
Close
,
Hieu T. Pham cUniversity of California, San Diego, La Jolla, California

Search for other papers by Hieu T. Pham in
Current site
Google Scholar
PubMed
Close
, and
Sutanu Sarkar cUniversity of California, San Diego, La Jolla, California

Search for other papers by Sutanu Sarkar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work evaluates the fidelity of various upper-ocean turbulence parameterizations subject to realistic monsoon forcing and presents a finite-time ensemble vector (EV) method to better manage the design and numerical principles of these parameterizations. The EV method emphasizes the dynamics of a turbulence closure multimodel ensemble and is applied to evaluate 10 different ocean surface boundary layer (OSBL) parameterizations within a single-column (SC) model against two boundary layer large-eddy simulations (LES). Both LES include realistic surface forcing, but one includes wind-driven shear turbulence only, while the other includes additional Stokes forcing through the wave-average equations that generate Langmuir turbulence. The finite-time EV framework focuses on what constitutes the local behavior of the mixed layer dynamical system and isolates the forcing and ocean state conditions where turbulence parameterizations most disagree. Identifying disagreement provides the potential to evaluate SC models comparatively against the LES. Observations collected during the 2018 monsoon onset in the Bay of Bengal provide a case study to evaluate models under realistic and variable forcing conditions. The case study results highlight two regimes where models disagree 1) during wind-driven deepening of the mixed layer and 2) under strong diurnal forcing.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Johnson’s current affiliation: Applied Physics Laboratory, University of Washington, Seattle, Washington.

This article is included in the Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Leah Johnson, leahjohn@uw.edu

Abstract

This work evaluates the fidelity of various upper-ocean turbulence parameterizations subject to realistic monsoon forcing and presents a finite-time ensemble vector (EV) method to better manage the design and numerical principles of these parameterizations. The EV method emphasizes the dynamics of a turbulence closure multimodel ensemble and is applied to evaluate 10 different ocean surface boundary layer (OSBL) parameterizations within a single-column (SC) model against two boundary layer large-eddy simulations (LES). Both LES include realistic surface forcing, but one includes wind-driven shear turbulence only, while the other includes additional Stokes forcing through the wave-average equations that generate Langmuir turbulence. The finite-time EV framework focuses on what constitutes the local behavior of the mixed layer dynamical system and isolates the forcing and ocean state conditions where turbulence parameterizations most disagree. Identifying disagreement provides the potential to evaluate SC models comparatively against the LES. Observations collected during the 2018 monsoon onset in the Bay of Bengal provide a case study to evaluate models under realistic and variable forcing conditions. The case study results highlight two regimes where models disagree 1) during wind-driven deepening of the mixed layer and 2) under strong diurnal forcing.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Johnson’s current affiliation: Applied Physics Laboratory, University of Washington, Seattle, Washington.

This article is included in the Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

Corresponding author: Leah Johnson, leahjohn@uw.edu
Save
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., K. Bolding, and M. R. Villarreal, 1999: GOTM, A General Ocean Turbulence Model: Theory, Implementation and Test Cases. Space Applications Institute, 103 pp.

  • Craik, A., 1982: The generalized Lagrangian-mean equations and hydrodynamic stability. J. Fluid Mech., 125, 2735, https://doi.org/10.1017/S002211208200322X.

    • Search Google Scholar
    • Export Citation
  • Crawford, G. B., and W. G. Large, 1996: A numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26, 873891, https://doi.org/10.1175/1520-0485(1996)026<0873:ANIORI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Y. Shcherbina, R. R. Harcourt, M. F. Cronin, M. A. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, https://doi.org/10.1002/2013GL058193.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc., A315, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Ducros, F., P. Comte, and M. Lesieur, 1996: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech., 326, 136, https://doi.org/10.1017/S0022112096008221.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and Coauthors, 2020: The effect of Langmuir turbulence under complex real oceanic and meteorological forcing. Ocean Modell., 149, 101601, https://doi.org/10.1016/j.ocemod.2020.101601.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., L. Johnson, and F. Qiao, 2021a: Ocean near-surface layers. Ocean Mixing: Drivers, Mechanisms and Impacts, M. Meredith and A. N. Garabato, Eds., Elsevier, 65–94.

  • Fox-Kemper, B., and Coauthors, 2021b: Ocean, cryosphere and sea level change. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1211–1362, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter09.pdf.

  • Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, https://doi.org/10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2013: A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43, 673697, https://doi.org/10.1175/JPO-D-12-0105.1.

    • Search Google Scholar
    • Export Citation
  • Holm, D. D., 1996: The ideal Craik-Leibovich equations. Physica D, 98, 415441, https://doi.org/10.1016/0167-2789(96)00105-4.

  • Holm, D. D., and R. Hu, 2021: Stochastic effects of waves on currents in the ocean mixed layer. J. Math. Phys., 62, 073102, https://doi.org/10.1063/5.0045010.

    • Search Google Scholar
    • Export Citation
  • Jaeger, G. S., J. MacKinnon, A. Lucas, E. Shroyer, J. Nash, A. Tandon, J. Farrar, and A. Mahadevan, 2020: How spice is stirred in the Bay of Bengal. J. Phys. Oceanogr., 50, 26692688, https://doi.org/10.1175/JPO-D-19-0077.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, L., and B. Fox-Kemper, 2022: Example scripts, notes, and data for “a dynamical systems approach to mixed layer model comparison.” Brown University Open Data Collection, https://doi.org/10.26300/c277-dz74.

  • Johnson, L., C. M. Lee, and E. A. D’Asaro, 2016: Global estimates of lateral springtime restratification. J. Phys. Oceanogr., 46, 15551573, https://doi.org/10.1175/JPO-D-15-0163.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., M. Corazza, and M. Cai, 2002: Are bred vectors the same as Lyapunov vectors? EGS XXVII General Assembly, Nice, France, European Geophysical Society, Abstract #6820.

  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19, 98106, https://doi.org/10.1111/j.2153-3490.1967.tb01462.x.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., E. G. Patton, A. K. DuVivier, P. P. Sullivan, and L. Romero, 2019: Similarity theory in the surface layer of large-eddy simulations of the wind-, wave-, and buoyancy-forced southern ocean. J. Phys. Oceanogr., 49, 21652187, https://doi.org/10.1175/JPO-D-18-0066.1.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1980: On wave-current interaction theories of Langmuir circulations. J. Fluid Mech., 99, 715724, https://doi.org/10.1017/S0022112080000857.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and B. Fox-Kemper, 2017: Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr., 47, 28632886, https://doi.org/10.1175/JPO-D-17-0085.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein, 2016: Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modell., 103, 145160, https://doi.org/10.1016/j.ocemod.2015.07.020.

    • Search Google Scholar
    • Export Citation
  • Li, Q., and Coauthors, 2019: Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst., 11, 35453592, https://doi.org/10.1029/2019MS001810.

    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., J. Yuan, X. Wan, J. Liu, B. Liu, H. Jang, and M. Tyagi, 2022: Exploring the use of machine learning to parameterize vertical mixing in the ocean surface boundary layer. Ocean Modell., 176, 102059, https://doi.org/10.1016/j.ocemod.2022.102059.

    • Search Google Scholar
    • Export Citation
  • Lucas, A. J., and Coauthors, 2016: Adrift upon a salinity-stratified sea: A view of upper-ocean processes in the Bay of Bengal during the southwest monsoon. Oceanography, 29, 134145, https://doi.org/10.5670/oceanog.2016.46.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, and A. F. Shchepetkin, 2009: Buoyancy effects in a stratified Ekman layer. J. Phys. Oceanogr., 39, 25812599, https://doi.org/10.1175/2009JPO4130.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Search Google Scholar
    • Export Citation
  • Monin, A., and A. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Norwood, A., E. Kalnay, K. Ide, S.-C. Yang, and C. Wolfe, 2013: Lyapunov, singular and bred vectors in a multi-scale system: An empirical exploration of vectors related to instabilities. J. Phys., 46A, 254021, https://doi.org/10.1088/1751-8113/46/25/254021.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956, https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pham, H. T., and S. Sarkar, 2018: Ageostrophic secondary circulation at a submesoscale front and the formation of gravity currents. J. Phys. Oceanogr., 48, 25072529, https://doi.org/10.1175/JPO-D-17-0271.1.

    • Search Google Scholar
    • Export Citation
  • Pham, H. T., S. Sarkar, L. Johnson, B. Fox-Kemper, P. P. Sullivan, and Q. Li, 2023: Multi-scale temporal variability of turbulent mixing during a Monsoon Intraseasonal Oscillation in the Bay of Bengal: An LES study. J. Geophys. Res. Oceans, 128, e2022JC018959, https://doi.org/10.1029/2022JC018959.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., M. Buijsman, and J. M. Klymak, 2012: Breaking topographic lee waves in a tidal channel in Luzon strait. Oceanography, 25, 160165, https://doi.org/10.5670/oceanog.2012.51.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1973: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., Y. Yuan, J. Deng, D. Dai, and Z. Song, 2016: Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models. Philos. Trans. Roy. Soc., 374A, 20150201, https://doi.org/10.1098/rsta.2015.0201.

    • Search Google Scholar
    • Export Citation
  • Rabe, T. J., T. Kukulka, I. Ginis, T. Hara, B. G. Reichl, E. A. D’Asaro, R. R. Harcourt, and P. P. Sullivan, 2015: Langmuir turbulence under Hurricane Gustav (2008). J. Phys. Oceanogr., 45, 657677, https://doi.org/10.1175/JPO-D-14-0030.1.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., and R. Hallberg, 2018: A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations. Ocean Modell., 132, 112129, https://doi.org/10.1016/j.ocemod.2018.10.004.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., and Q. Li, 2019: A parameterization with a constrained potential energy conversion rate of vertical mixing due to Langmuir turbulence. J. Phys. Oceanogr., 49, 29352959, https://doi.org/10.1175/JPO-D-18-0258.1.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., D. Wang, T. Hara, I. Ginis, and T. Kukulka, 2016: Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr., 46, 863886, https://doi.org/10.1175/JPO-D-15-0106.1.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., A. Adcroft, S. M. Griffies, and R. Hallberg, 2022: A potential energy analysis of ocean surface mixed layers. J. Geophys. Res. Oceans, 127, e2021JC018140, https://doi.org/10.1029/2021JC018140.

    • Search Google Scholar
    • Export Citation
  • Rodi, W., 1987: Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res., 92, 53055328, https://doi.org/10.1029/JC092iC05p05305.

    • Search Google Scholar
    • Export Citation
  • Shroyer, E., and Coauthors, 2021: Bay of Bengal intraseasonal oscillations and the 2018 monsoon onset. Bull. Amer. Meteor. Soc., 102, E1936E1951, https://doi.org/10.1175/BAMS-D-20-0113.1.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., W. D. Smyth, and G. B. Crawford, 2000: Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30, 18661890, https://doi.org/10.1175/1520-0485(2000)030<1866:RWDMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Souza, A. N., and Coauthors, 2020: Uncertainty quantification of ocean parameterizations: Application to the K-profile-parameterization for penetrative convection. J. Adv. Model. Earth Syst., 12, e2020MS002108, https://doi.org/10.1029/2020MS002108.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, https://doi.org/10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Suzuki, N., and B. Fox-Kemper, 2016: Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans, 121, 35793596, https://doi.org/10.1002/2015JC011566.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M., and S. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229267, https://doi.org/10.1017/S0022112002007838.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 2018: A First Course in Turbulence. MIT Press, 316 pp.

  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, https://doi.org/10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61, 235265.

  • Umlauf, L., and H. Burchard, 2005: Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res., 25, 795827, https://doi.org/10.1016/j.csr.2004.08.004.

    • Search Google Scholar
    • Export Citation
  • VanDine, A., H. T. Pham, and S. Sarkar, 2020: Investigation of les models for a stratified shear layer. Comput. Fluids, 198, 104405, https://doi.org/10.1016/j.compfluid.2019.104405.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L., and Coauthors, 2018: The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to LES. J. Adv. Model. Earth Syst., 10, 26472685, https://doi.org/10.1029/2018MS001336.

    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., D. A. Cherian, R. M. Holmes, S. D. Bachman, R.-C. Lien, W. G. Large, and J. N. Moum, 2022: Simulation and scaling of the turbulent vertical heat transport and deep-cycle turbulence across the equatorial Pacific cold tongue. J. Phys. Oceanogr., 52, 9811014, https://doi.org/10.1175/JPO-D-21-0153.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and R. M. Samelson, 2007: An efficient method for recovering Lyapunov vectors from singular vectors. Tellus, 59A, 355366, https://doi.org/10.1111/j.1600-0870.2007.00234.x.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J., 2010: Turbulence in the Atmosphere. Cambridge University Press, 407 pp.

All Time Past Year Past 30 Days
Abstract Views 799 801 114
Full Text Views 350 350 30
PDF Downloads 364 364 36