On the Observed Wind-Driven Circulation Response in Small Semienclosed Bays

Alejandro Cáceres-Euse aUniversité de Toulon, Aix Marseille Université, CNRS, IRD, MIO, Toulon, France

Search for other papers by Alejandro Cáceres-Euse in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8701-3386
,
Veronica Morales-Márquez aUniversité de Toulon, Aix Marseille Université, CNRS, IRD, MIO, Toulon, France

Search for other papers by Veronica Morales-Márquez in
Current site
Google Scholar
PubMed
Close
, and
Anne Molcard aUniversité de Toulon, Aix Marseille Université, CNRS, IRD, MIO, Toulon, France

Search for other papers by Anne Molcard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes horizontal and vertical wind-driven circulation responses in small semienclosed bays, the associated offshore dynamic conditions, and the relative importance of each term in the momentum balance equations using a multiplatform observational system. The observational platform consists of three ADCPs and a land-based radar monitoring the velocity field within the bay and in the contiguous offshore area. The wind-driven patterns in the bay can switch from a barotropic cyclonic or anticyclonic circulation to a two-layer baroclinic mode response as a function of the wind regime (its direction and magnitude). For the baroclinic mode, the vertical location of the inflection point in the velocity profile can vary according to the proximity of the boundary current to the entrance of the bay. The influence of offshore combined meteorological and marine conditions on the inner-bay dynamics is evidenced under moderate to strong wind conditions and is almost nonexistent under negligible wind. The momentum balance analysis as well as the nondimensional numbers evidence the impact of wind stress, coastline shape, stratification, and the nonlinear advective terms. Advection can be at the same order of magnitude as pressure gradient, Coriolis, or wind stress terms and can be greater than the bottom stress terms. The nonlinear terms in the momentum equations are frequently neglected when analyzing wind-driven circulation by means of in situ data or analytical models.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alejandro Cáceres-Euse, alejandro.caceres-euse@univ-tln.fr

Abstract

This study analyzes horizontal and vertical wind-driven circulation responses in small semienclosed bays, the associated offshore dynamic conditions, and the relative importance of each term in the momentum balance equations using a multiplatform observational system. The observational platform consists of three ADCPs and a land-based radar monitoring the velocity field within the bay and in the contiguous offshore area. The wind-driven patterns in the bay can switch from a barotropic cyclonic or anticyclonic circulation to a two-layer baroclinic mode response as a function of the wind regime (its direction and magnitude). For the baroclinic mode, the vertical location of the inflection point in the velocity profile can vary according to the proximity of the boundary current to the entrance of the bay. The influence of offshore combined meteorological and marine conditions on the inner-bay dynamics is evidenced under moderate to strong wind conditions and is almost nonexistent under negligible wind. The momentum balance analysis as well as the nondimensional numbers evidence the impact of wind stress, coastline shape, stratification, and the nonlinear advective terms. Advection can be at the same order of magnitude as pressure gradient, Coriolis, or wind stress terms and can be greater than the bottom stress terms. The nonlinear terms in the momentum equations are frequently neglected when analyzing wind-driven circulation by means of in situ data or analytical models.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alejandro Cáceres-Euse, alejandro.caceres-euse@univ-tln.fr
Save
  • Alvera-Azcárate, A., A. Barth, M. Rixen, and J. Beckers, 2005: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: Application to the Adriatic Sea surface temperature. Ocean Modell., 9, 325346, https://doi.org/10.1016/j.ocemod.2004.08.001.

    • Search Google Scholar
    • Export Citation
  • AlYousif, A., J. A. Laurel-Castillo, S. So, M. S. Parra, P. Adams, and A. Valle-Levinson, 2021: Subinertial hydrodynamics around a cape influenced by a western boundary current. Estuarine Coastal Shelf Sci., 251, 107199, https://doi.org/10.1016/j.ecss.2021.107199.

    • Search Google Scholar
    • Export Citation
  • Austin, J. A., and S. J. Lentz, 2002: The inner shelf response to wind-driven upwelling and downwelling. J. Phys. Oceanogr., 32, 21712193, https://doi.org/10.1175/1520-0485(2002)032<2171:TISRTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berta, M., and Coauthors, 2018: Wind-induced variability in the Northern Current (northwestern Mediterranean Sea) as depicted by a multi-platform observing system. Ocean Sci., 14, 689710, https://doi.org/10.5194/os-14-689-2018.

    • Search Google Scholar
    • Export Citation
  • Bourg, N., and A. Molcard, 2021: Northern boundary current variability and mesoscale dynamics: A long-term HF RADAR monitoring in the north-western Mediterranean Sea. Ocean Dyn., 71, 851870, https://doi.org/10.1007/s10236-021-01466-9.

    • Search Google Scholar
    • Export Citation
  • Brousseau, P., Y. Seity, D. Ricard, and J. Léeger, 2016: Improvement of the forecast of convective activity from the AROME-France system. Quart. J. Roy. Meteor. Soc., 142, 22312243, https://doi.org/10.1002/qj.2822.

    • Search Google Scholar
    • Export Citation
  • Cáceres-Euse, A., A. Molcard, N. Bourg, D. Dumas, C.-A. Guérin, and G. Besio, 2022: Breakdown of near-surface sea current from high-frequency radar data. J. Atmos. Oceanic Technol., 39, 19271942, https://doi.org/10.1175/JTECH-D-22-0013.1.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2010: Introduction to Geophysical Fluid Dynamics—Physical and Numerical Applications. 2nd ed. Academic Press, 875 pp.

  • Dufresne, C., C. Duffa, and V. Rey, 2014: Wind-forced circulation model and water exchanges through the channel in the Bay of Toulon. Ocean Dyn., 64, 209224, https://doi.org/10.1007/s10236-013-0676-3.

    • Search Google Scholar
    • Export Citation
  • Dumas, D., A. Gramoullé, C.-A. Guérin, A. Molcard, Y. Ourmières, and B. Zakardjian, 2020: Multistatic estimation of high-frequency radar surface currents in the region of Toulon. Ocean Dyn., 70, 14851503, https://doi.org/10.1007/s10236-020-01406-z.

    • Search Google Scholar
    • Export Citation
  • Fischer, H. B., E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks, 1979: Mixing in Inland and Coastal Waters. Academic Press, 512 pp.

  • Grinsted, A., J. C. Moore, and S. Jevrejeva, 2004: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 11, 561566, https://doi.org/10.5194/npg-11-561-2004.

    • Search Google Scholar
    • Export Citation
  • Guérin, C.-A., D. Dumas, A. Gramoullé, C. Quentin, M. Saillard, and A. Molcard, 2019: The multistatic oceanographic HF radar network in Toulon. IEEE 2019 Int. Radar Conf. (RADAR), Toulon, France, Institute of Electrical and Electronics Engineers, 1–5, https://doi.org/10.1109/RADAR41533.2019.171401.

  • Guihou, K., J. Marmain, Y. Ourmières, A. Molcard, B. Zakardjian, and P. Forget, 2013: A case study of the mesoscale dynamics in the North-Western Mediterranean Sea: A combined data–model approach. Ocean Dyn., 63, 793808, https://doi.org/10.1007/s10236-013-0619-z.

    • Search Google Scholar
    • Export Citation
  • Hernández-Carrasco, I., and A. Orfila, 2018: The role of an intense front on the connectivity of the western Mediterranean Sea: The Cartagena-Tenes front. J. Geophys. Res. Oceans, 123, 43984422, https://doi.org/10.1029/2017JC013613.

    • Search Google Scholar
    • Export Citation
  • Hernández-Carrasco, I., L. Solabarrieta, A. Rubio, G. Esnaola, E. Reyes, and A. Orfila, 2018: Impact of HF radar current gap-filling methodologies on the Lagrangian assessment of coastal dynamics. Ocean Sci., 14, 827847, https://doi.org/10.5194/os-14-827-2018.

    • Search Google Scholar
    • Export Citation
  • Hinata, H., N. Kanatsu, and S. Fujii, 2010: Dependence of wind-driven current on wind stress direction in a small semienclosed, homogeneous rotating basin. J. Phys. Oceanogr., 40, 14881500, https://doi.org/10.1175/2010JPO4363.1.

    • Search Google Scholar
    • Export Citation
  • Huang, W., and C. Li, 2017: Cold front driven flows through multiple inlets of Lake Pontchartrain Estuary. J. Geophys. Res. Oceans, 122, 86278645, https://doi.org/10.1002/2017JC012977.

    • Search Google Scholar
    • Export Citation
  • Huang, W., and C. Li, 2019: Spatial variation of cold front wind-driven circulation and quasi-steady state balance in Lake Pontchartrain Estuary. Estuarine Coastal Shelf Sci., 224, 154170, https://doi.org/10.1016/j.ecss.2019.04.031.

    • Search Google Scholar
    • Export Citation
  • Jia, P., and M. Li, 2012: Dynamics of wind-driven circulation in a shallow lagoon with strong horizontal density gradient. J. Geophys. Res., 117, C05013, https://doi.org/10.1029/2011JC007475.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2001: Self-Organizing Maps. 3rd ed. Springer Series in Information Sciences, Vol. 30, Springer, 502 pp.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Largier, J. L., 2020: Upwelling bays: How coastal upwelling controls circulation, habitat, and productivity in bays. Annu. Rev. Mar. Sci., 12, 415447, https://doi.org/10.1146/annurev-marine-010419-011020.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 2001: The influence of stratification on the wind-driven cross-shelf circulation over the North Carolina shelf. J. Phys. Oceanogr., 31, 27492760, https://doi.org/10.1175/1520-0485(2001)031<2749:TIOSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and D. C. Chapman, 2004: The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr., 34, 24442457, https://doi.org/10.1175/JPO2644.1.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, https://doi.org/10.1146/annurev-marine-120709-142745.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., R. T. Guza, S. Elgar, F. Feddersen, and T. H. C. Herbers, 1999: Momentum balances on the North Carolina inner shelf. J. Geophys. Res., 104, 18 20518 226, https://doi.org/10.1029/1999JC900101.

    • Search Google Scholar
    • Export Citation
  • Li, C., 2013: Subtidal water flux through a multiple-inlet system: Observations before and during a cold front event and numerical experiments. J. Geophys. Res. Oceans, 118, 18771892, https://doi.org/10.1002/jgrc.20149.

    • Search Google Scholar
    • Export Citation
  • Li, C., W. Huang, C. Chen, and H. Lin, 2018: Flow regimes and adjustment to wind-driven motions in Lake Pontchartrain Estuary: A modeling experiment using FVCOM. J. Geophys. Res. Oceans, 123, 84608488, https://doi.org/10.1029/2018JC013985.

    • Search Google Scholar
    • Export Citation
  • Li, C., W. Huang, and B. Milan, 2019: Atmospheric cold front–induced exchange flows through a microtidal multi-inlet bay: Analysis using multiple horizontal ADCPs and FVCOM simulations. Estuarine Coastal Shelf Sci., 36, 443472, https://doi.org/10.1175/JTECH-D-18-0143.1.

    • Search Google Scholar
    • Export Citation
  • Lira-Loarca, A., A. Cáceres-Euse, F. De-Leo, and G. Besio, 2022: Wave modeling with unstructured mesh for hindcast, forecast and wave hazard applications in the Mediterranean Sea. Appl. Ocean Res., 122, 103118, https://doi.org/10.1016/j.apor.2022.103118.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. H. Weisberg, 2005a: Momentum balance diagnoses for the West Florida shelf. Cont. Shelf Res., 25, 20542074, https://doi.org/10.1016/j.csr.2005.03.004.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. H. Weisberg, 2005b: Patterns of ocean current variability on the West Florida shelf using the self-organizing map. J. Geophys. Res., 110, C06003, https://doi.org/10.1029/2004JC002786.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. H. Weisberg, 2007: Ocean currents and sea surface heights estimated across the West Florida shelf. J. Phys. Oceanogr., 37, 16971713, https://doi.org/10.1175/JPO3083.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and C. N. K. Mooers, 2006: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res., 111, C05018, https://doi.org/10.1029/2005JC003117.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., R. H. Weisberg, and L. K. Shay, 2007: Current patterns on the West Florida shelf from joint self-organizing map analyses of HF radar and ADCP data. J. Atmos. Oceanic Technol., 24, 702712, https://doi.org/10.1175/JTECH1999.1.

    • Search Google Scholar
    • Export Citation
  • Mazoyer, C., H. Vanneste, C. Dufresne, Y. Ourmières, M. G. Magaldi, and A. Molcard, 2020: Impact of wind-driven circulation on contaminant dispersion in a semi-enclosed bay. Estuarine Coastal Shelf Sci., 233, 106529, https://doi.org/10.1016/j.ecss.2019.106529.

    • Search Google Scholar
    • Export Citation
  • Melaku Canu, D., L. Aveytua-Alcázar, V. F. Camacho-Ibar, S. Querin, and C. Solidoro, 2016: Hydrodynamic properties of San Quintin Bay, Baja California: Merging models and observations. Mar. Pollut. Bull., 108, 203214, https://doi.org/10.1016/j.marpolbul.2016.04.030.

    • Search Google Scholar
    • Export Citation
  • Mihanović, H., S. Cosoli, I. Vilibić, D. Ivankovi, V. Dadić, and M. Gačić, 2011: Surface current patterns in the northern Adriatic extracted from high-frequency radar data using self-organizing map analysis. J. Geophys. Res., 116, C08033, https://doi.org/10.1029/2011JC007104.

    • Search Google Scholar
    • Export Citation
  • Millot, C., 1999: Circulation in the western Mediterranean Sea. J. Mar. Syst., 20, 423442, https://doi.org/10.1016/S0924-7963(98)00078-5.

    • Search Google Scholar
    • Export Citation
  • Molcard, A., A. Gramoullé, C. Mazoyer, N. Bourg, and Y. Ourmières, 2021: Dynamics and transport from the boundary northern current toward the Toulon Bay: Multi-platform observations and downscaling modelling approaches. Ocean Dyn., 71, 9931009, https://doi.org/10.1007/s10236-021-01479-4.

    • Search Google Scholar
    • Export Citation
  • Morales-Márquez, V., I. Hernández-Carrasco, G. Simarro, V. Rossi, and A. Orfila, 2021: Regionalizing the impacts of wind- and wave-induced currents on surface ocean dynamics: A long-term variability analysis in the Mediterranean Sea. J. Geophys. Res. Oceans, 126, e2020JC017104, https://doi.org/10.1029/2020JC017104.

    • Search Google Scholar
    • Export Citation
  • Nicolau, R., Y. Lucas, P. Merdy, and M. Raynaud, 2012: Base flow and stormwater net fluxes of carbon and trace metals to the Mediterranean Sea by an urbanized small river. Water Res., 46, 66256637, https://doi.org/10.1016/j.watres.2012.01.031.

    • Search Google Scholar
    • Export Citation
  • Orfila, A., C. P. Urbano-Latorre, J. M. Sayol, S. Gonzalez-Montes, A. Cáceres-Euse, I. Hernández-Carrasco, and A. G. Muñoz, 2021: On the impact of the Caribbean counter current in the Guajira upwelling system. Front. Mar. Sci., 8, 626823, https://doi.org/10.3389/fmars.2021.626823.

    • Search Google Scholar
    • Export Citation
  • Ourmières, Y., B. Zakardjian, K. Béranger, and C. Langlais, 2011: Assessment of a NEMO-based downscaling experiment for the North-Western Mediterranean region: Impacts on the northern current and comparison with ADCP data and altimetry products. Ocean Modell., 39, 386404, https://doi.org/10.1016/j.ocemod.2011.06.002.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and L. Washburn, 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, https://doi.org/10.1146/annurev-marine-121211-172315.

    • Search Google Scholar
    • Export Citation
  • Paugam, C., D. Sous, V. Rey, S. Meulé, V. Faure, O. Boutron, E. Luna-Laurent, and E. Migne, 2021: Wind tides and surface friction coefficient in semi-enclosed shallow lagoons. Estuarine Coastal Shelf Sci., 257, 107406, https://doi.org/10.1016/j.ecss.2021.107406.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., 2010: Periodic wind-driven circulation in an elongated and rotating basin. J. Phys. Oceanogr., 40, 20432058, https://doi.org/10.1175/2010JPO4235.1.

    • Search Google Scholar
    • Export Citation
  • Ponte, A. L., G. Gutiérrez de Velasco, A. Valle-Levinson, K. B. Winters, and C. D. Winant, 2012: Wind-driven subinertial circulation inside a semienclosed bay in the Gulf of California. J. Phys. Oceanogr., 42, 940955, https://doi.org/10.1175/JPO-D-11-0103.1.

    • Search Google Scholar
    • Export Citation
  • Rey, V., C. Dufresne, J.-L. Fuda, D. Mallarino, T. Missamou, C. Paugam, G. Rougier, and T. Taupier-Letage, 2020: On the use of long-term observation of water level and temperature along the shore for a better understanding of the dynamics: Example of Toulon area, France. Ocean Dyn., 70, 913933, https://doi.org/10.1007/s10236-020-01363-7.

    • Search Google Scholar
    • Export Citation
  • Reyes-Hernández, C., and A. Valle-Levinson, 2010: Wind modifications to density-driven flows in semienclosed, rotating basins. J. Phys. Oceanogr., 40, 14731487, https://doi.org/10.1175/2010JPO4230.1.

    • Search Google Scholar
    • Export Citation
  • Sanay, R., and A. Valle-Levinson, 2005: Wind-induced circulation in semienclosed homogeneous, rotating basins. J. Phys. Oceanogr., 35, 25202531, https://doi.org/10.1175/JPO2831.1.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trautman, N., and R. K. Walter, 2021: Seasonal variability of upwelling and downwelling surface current patterns in a small coastal embayment. Cont. Shelf Res., 226, 104490, https://doi.org/10.1016/j.csr.2021.104490.

    • Search Google Scholar
    • Export Citation
  • Valle-Levinson, A., 2008: Density-driven exchange flow in terms of the Kelvin and Ekman numbers. J. Geophys. Res., 113, C04001, https://doi.org/10.1029/2007JC004144.

    • Search Google Scholar
    • Export Citation
  • Valle-Levinson, A., and J. Moraga-Opazon, 2006: Observations of bipolar residual circulation in two equatorward-facing semiarid bays. Cont. Shelf Res., 26, 179193, https://doi.org/10.1016/j.csr.2005.10.002.

    • Search Google Scholar
    • Export Citation
  • Vesanto, J., J. Himberg, E. Alhoniemi, and J. Parhankangas, 2000: SOM toolbox for Matlab 5. SOM Toolbox Team, Helsinki University of Technology, http://www.cis.hut.fi/somtoolbox/.

  • Vilibić, I., and Coauthors, 2016: Self-organizing maps-based ocean currents forecasting system. Sci. Rep., 6, 22924, https://doi.org/10.1038/srep22924.

    • Search Google Scholar
    • Export Citation
  • Winant, C. D., 2004: Three dimensional wind-driven flow in an elongated, rotating basin. J. Phys. Oceanogr., 34, 462476, https://doi.org/10.1175/1520-0485(2004)034<0462:TWFIAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 458 458 37
Full Text Views 161 161 18
PDF Downloads 176 176 20