Mechanism on the Short-Term Variability of the Atlantic Meridional Overturning Circulation in the Subtropical and Tropical Regions

Lei Han aChina-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
bCollege of Ocean and Earth Sciences, Xiamen University, Xiamen, China

Search for other papers by Lei Han in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6470-4152
Restricted access

Abstract

The continuous, moored observation revealed significant variability in the strength of the Atlantic meridional overturning circulation (AMOC). The cause of such AMOC variability is an extensively studied subject. This study focuses on the short-term variability, which ranges up to seasonal and interannual time scales. A mechanism is proposed from the perspective of ocean water redistribution by layers. By offering explanations for four phenomena of AMOC variability in the subtropical and tropical oceans (seasonality, meridional coherence, layered-transport compensation as observed at 26.5°N, and the 2009/10 downturn that occurred at 26.5°N), this mechanism suggests that the short-term AMOC variabilities in the entire subtropical and tropical regions are governed by a basinwide adiabatic water redistribution process, or the so-called sloshing dynamics, rather than diapycnal processes.

Significance Statement

The Atlantic meridional overturning circulation (AMOC) is a key component in the global climate system due to its immense power in redistributing heat meridionally, which contributes to the hospitable climate of the United Kingdom and western Europe. Therefore, any changes in AMOC can have significant impacts on both global and local climate variability. Here I propose a mechanism to explain the short-term (up to interannual) AMOC variability in the subtropical and tropical regions from the perspective of ocean water redistribution. This mechanism suggests that the short-term variability of AMOC strength is dominated by an adiabatic process, and thus, its large-amplitude variation is mostly a reversible process. In other words, AMOC may be more resilient to short-term variability than previously believed, and it could recover autonomously from the abrupt changes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Han, lei.han@xmu.edu.my

Abstract

The continuous, moored observation revealed significant variability in the strength of the Atlantic meridional overturning circulation (AMOC). The cause of such AMOC variability is an extensively studied subject. This study focuses on the short-term variability, which ranges up to seasonal and interannual time scales. A mechanism is proposed from the perspective of ocean water redistribution by layers. By offering explanations for four phenomena of AMOC variability in the subtropical and tropical oceans (seasonality, meridional coherence, layered-transport compensation as observed at 26.5°N, and the 2009/10 downturn that occurred at 26.5°N), this mechanism suggests that the short-term AMOC variabilities in the entire subtropical and tropical regions are governed by a basinwide adiabatic water redistribution process, or the so-called sloshing dynamics, rather than diapycnal processes.

Significance Statement

The Atlantic meridional overturning circulation (AMOC) is a key component in the global climate system due to its immense power in redistributing heat meridionally, which contributes to the hospitable climate of the United Kingdom and western Europe. Therefore, any changes in AMOC can have significant impacts on both global and local climate variability. Here I propose a mechanism to explain the short-term (up to interannual) AMOC variability in the subtropical and tropical regions from the perspective of ocean water redistribution. This mechanism suggests that the short-term variability of AMOC strength is dominated by an adiabatic process, and thus, its large-amplitude variation is mostly a reversible process. In other words, AMOC may be more resilient to short-term variability than previously believed, and it could recover autonomously from the abrupt changes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Han, lei.han@xmu.edu.my

Supplementary Materials

    • Supplemental Materials (PDF 1.0763 MB)
Save
  • Alexander-Turner, R., P. Ortega, and J. I. Robson, 2018: How robust are the surface temperature fingerprints of the Atlantic overturning meridional circulation on monthly time scales? Geophys. Res. Lett., 45, 35593567, https://doi.org/10.1029/2017GL076759.

    • Search Google Scholar
    • Export Citation
  • Baehr, J., S. Cunnningham, H. Haak, P. Heimbach, T. Kanzow, and J. Marotzke, 2009: Observed and simulated estimates of the meridional overturning circulation at 26.5°N in the Atlantic. Ocean Sci., 5, 575589, https://doi.org/10.5194/os-5-575-2009.

    • Search Google Scholar
    • Export Citation
  • Barrier, N., C. Cassou, J. Deshayes, and A.-M. Treguier, 2014: Response of North Atlantic Ocean circulation to atmospheric weather regimes. J. Phys. Oceanogr., 44, 179201, https://doi.org/10.1175/JPO-D-12-0217.1.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, J. Getzlaff, J. Molines, and G. Madec, 2008: Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615, https://doi.org/10.1175/2008JCLI2404.1.

    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett., 34, L23606, https://doi.org/10.1029/2007GL031731.

    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493.

    • Search Google Scholar
    • Export Citation
  • Cabanes, C., T. Lee, and L.-L. Fu, 2008: Mechanisms of interannual variations of the meridional overturning circulation of the North Atlantic Ocean. J. Phys. Oceanogr., 38, 467480, https://doi.org/10.1175/2007JPO3726.1.

    • Search Google Scholar
    • Export Citation
  • Carvalho-Oliveira, J., L. F. Borchert, A. Duchez, M. Dobrynin, and J. Baehr, 2021: Subtle influence of the Atlantic meridional overturning circulation (AMOC) on seasonal sea surface temperature (SST) hindcast skill in the North Atlantic. Wea. Climate Dyn., 2, 739757, https://doi.org/10.5194/wcd-2-739-2021.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., 2019: The global overturning circulation. Annu. Rev. Mar. Sci., 11, 249270, https://doi.org/10.1146/annurev-marine-010318-095241.

    • Search Google Scholar
    • Export Citation
  • Chidichimo, M. P., T. Kanzow, S. A. Cunningham, W. E. Johns, and J. Marotzke, 2010: The contribution of eastern-boundary density variations to the Atlantic meridional overturning circulation at 26.5°N. Ocean Sci., 6, 475490, https://doi.org/10.5194/os-6-475-2010.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, https://doi.org/10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2013: Atlantic meridional overturning circulation slowdown cooled the subtropical ocean. Geophys. Res. Lett., 40, 62026207, https://doi.org/10.1002/2013GL058464.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. Garzoli, M. Baringer, C. Meinen, and G. Goni, 2009: Interannual variations in the Atlantic meridional overturning circulation and its relationship with the net northward heat transport in the South Atlantic. Geophys. Res. Lett., 36, L20606, https://doi.org/10.1029/2009GL039356.

    • Search Google Scholar
    • Export Citation
  • Dong, S., M. O. Baringer, G. J. Goni, C. S. Meinen, and S. L. Garzoli, 2014: Seasonal variations in the South Atlantic meridional overturning circulation from observations and numerical models. Geophys. Res. Lett., 41, 46114618, https://doi.org/10.1002/2014GL060428.

    • Search Google Scholar
    • Export Citation
  • Dong, S., G. Goni, and F. Bringas, 2015: Temporal variability of the South Atlantic meridional overturning circulation between 20°S and 35°S. Geophys. Res. Lett., 42, 76557662, https://doi.org/10.1002/2015GL065603.

    • Search Google Scholar
    • Export Citation
  • Dong, S., G. Goni, R. Domingues, F. Bringas, M. Goes, J. Christophersen, and M. Baringer, 2021: Synergy of in situ and satellite ocean observations in determining meridional heat transport in the Atlantic Ocean. J. Geophys. Res. Oceans, 126, e2020JC017073, https://doi.org/10.1029/2020JC017073.

    • Search Google Scholar
    • Export Citation
  • Duchez, A., P. Courtois, E. Harris, S. A. Josey, T. Kanzow, R. Marsh, D. A. Smeed, and J. J.-M. Hirschi, 2016: Potential for seasonal prediction of Atlantic sea surface temperatures using the RAPID array at 26°N. Climate Dyn., 46, 33513370, https://doi.org/10.1007/s00382-015-2918-1.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., C. Hughes, S. Olhede, and J. Toole, 2013: Coherence of western boundary pressure at the RAPID WAVE array: Boundary wave adjustments or deep western boundary current advection? J. Phys. Oceanogr., 43, 744765, https://doi.org/10.1175/JPO-D-12-067.1.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., E. Frajka-Williams, C. W. Hughes, and J. K. Willis, 2014: The observed North Atlantic meridional overturning circulation: Its meridional coherence and ocean bottom pressure. J. Phys. Oceanogr., 44, 517537, https://doi.org/10.1175/JPO-D-13-026.1.

    • Search Google Scholar
    • Export Citation
  • Elipot, S., E. Frajka-Williams, C. W. Hughes, S. Olhede, and M. Lankhorst, 2017: Observed basin-scale response of the North Atlantic meridional overturning circulation to wind stress forcing. J. Climate, 30, 20292054, https://doi.org/10.1175/JCLI-D-16-0664.1.

    • Search Google Scholar
    • Export Citation
  • Evans, D. G., J. Toole, G. Forget, J. D. Zika, A. C. Naveira Garabato, A. J. G. Nurser, and L. Yu, 2017: Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation. J. Phys. Oceanogr., 47, 633647, https://doi.org/10.1175/JPO-D-16-0089.1.

    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., and Coauthors, 2016: Compensation between meridional flow components of the Atlantic MOC at 26°N. Ocean Sci., 12, 481493, https://doi.org/10.5194/os-12-481-2016.

    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., M. Lankhorst, J. Koelling, and U. Send, 2018: Coherent circulation changes in the deep North Atlantic from 16°N and 26°N transport arrays. J. Geophys. Res. Oceans, 123, 34273443, https://doi.org/10.1029/2018JC013949.

    • Search Google Scholar
    • Export Citation
  • Fu, Y., and Coauthors, 2023: Seasonality of the meridional overturning circulation in the subpolar North Atlantic. Commun. Earth Environ., 4, 181, https://doi.org/10.1038/s43247-023-00848-9.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2017: ECCO version 4 release 3. DSpace@MIT, 10 pp., https://hdl.handle.net/1721.1/110380.

  • Han, L., 2021: The sloshing and diapycnal meridional overturning circulations in the Indian Ocean. J. Phys. Oceanogr., 51, 701725, https://doi.org/10.1175/JPO-D-20-0211.1.

    • Search Google Scholar
    • Export Citation
  • Herrford, J., P. Brandt, T. Kanzow, R. Hummels, M. Araujo, and J. V. Durgadoo, 2021: Seasonal variability of the Atlantic meridional overturning circulation at 11°S inferred from bottom pressure measurements. Ocean Sci., 17, 265284, https://doi.org/10.5194/os-17-265-2021.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J. J.-M., P. D. Killworth, and J. R. Blundell, 2007: Subannual, seasonal, and interannual variability of the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 12461265, https://doi.org/10.1175/JPO3049.1.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J. J.-M., A. T. Blaker, B. Sinha, A. Coward, B. de Cuevas, S. Alderson, and G. Madec, 2013: Chaotic variability of the meridional overturning circulation on subannual to interannual timescales. Ocean Sci., 9, 805823, https://doi.org/10.5194/os-9-805-2013.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J. J.-M., and Coauthors, 2020: The Atlantic meridional overturning circulation in high‐resolution models. J. Geophys. Res. Oceans, 125, e2019JC015522, https://doi.org/10.1029/2019JC015522.

    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., and Coauthors, 2019: The mean state and variability of the North Atlantic circulation: A perspective from ocean reanalyses. J. Geophys. Res. Oceans, 124, 91419170, https://doi.org/10.1029/2019JC015210.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., P. Cessi, D. P. Marshall, F. Schloesser, and M. A. Spall, 2019: Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 124, 53765399, https://doi.org/10.1029/2019JC015330.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., and Coauthors, 2007: Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science, 317, 938941, https://doi.org/10.1126/science.1141293.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., and Coauthors, 2010: Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J. Climate, 23, 56785698, https://doi.org/10.1175/2010JCLI3389.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., L. Thompson, and J. Lyman, 2014: The coherence and impact of meridional heat transport anomalies in the Atlantic Ocean inferred from observations. J. Climate, 27, 14691487, https://doi.org/10.1175/JCLI-D-12-00131.1.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2005: Anomalies of meridional overturning: Mechanisms in the North Atlantic. J. Phys. Oceanogr., 35, 14551472, https://doi.org/10.1175/JPO2767.1.

    • Search Google Scholar
    • Export Citation
  • Kostov, Y., H. L. Johnson, and D. P. Marshall, 2019: AMOC sensitivity to surface buoyancy fluxes: The role of air-sea feedback mechanisms. Climate Dyn., 53, 45214537, https://doi.org/10.1007/s00382-019-04802-4.

    • Search Google Scholar
    • Export Citation
  • Kostov, Y., and Coauthors, 2021: Distinct sources of interannual subtropical and subpolar Atlantic overturning variability. Nat. Geosci., 14, 491495, https://doi.org/10.1038/s41561-021-00759-4.

    • Search Google Scholar
    • Export Citation
  • Kostov, Y., M.-J. Messias, H. Mercier, H. L. Johnson, and D. P. Marshall, 2023: Fast mechanisms linking the Labrador Sea with subtropical Atlantic overturning. Climate Dyn., 60, 26872712, https://doi.org/10.1007/s00382-022-06459-y.

    • Search Google Scholar
    • Export Citation
  • Li, F., M. S. Lozier, G. Danabasoglu, N. P. Holliday, Y.-O. Kwon, A. Romanou, S. G. Yeager, and R. Zhang, 2019: Local and downstream relationships between Labrador Sea Water volume and North Atlantic meridional overturning circulation variability. J. Climate, 32, 38833898, https://doi.org/10.1175/JCLI-D-18-0735.1.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 2010: Deconstructing the conveyor belt. Science, 328, 15071511, https://doi.org/10.1126/science.1189250.

  • Lozier, M. S., 2012: Overturning in the North Atlantic. Annu. Rev. Mar. Sci., 4, 291315, https://doi.org/10.1146/annurev-marine-120710-100740.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2017: Overturning in the subpolar North Atlantic Program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, https://doi.org/10.1175/BAMS-D-16-0057.1.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G., and Coauthors, 2012: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 39, L19609, https://doi.org/10.1029/2012GL052933.

    • Search Google Scholar
    • Export Citation
  • Mielke, C., E. Frajka-Williams, and J. Baehr, 2013: Observed and simulated variability of the AMOC at 26°N and 41°N. Geophys. Res. Lett., 40, 11591164, https://doi.org/10.1002/grl.50233.

    • Search Google Scholar
    • Export Citation
  • Moat, B. I., and Coauthors, 2019: Insights into decadal North Atlantic sea surface temperature and ocean heat content variability from an eddy-permitting coupled climate model. J. Climate, 32, 61376161, https://doi.org/10.1175/JCLI-D-18-0709.1.

    • Search Google Scholar
    • Export Citation
  • Moffa-Sánchez, P., and I. R. Hall, 2017: North Atlantic variability and its links to European climate over the last 3000 years. Nat. Commun., 8, 1726, https://doi.org/10.1038/s41467-017-01884-8.

    • Search Google Scholar
    • Export Citation
  • Pérez-Hernández, M. D., G. D. McCarthy, P. Vélez Belchí, D. A. Smeed, E. Fraile Nuez, and A. Hernández Guerra, 2015: The Canary Basin contribution to the seasonal cycle of the Atlantic meridional overturning circulation at 26°N. J. Geophys. Res. Oceans, 120, 72377252, https://doi.org/10.1002/2015JC010969.

    • Search Google Scholar
    • Export Citation
  • Pillar, H. R., P. Heimbach, H. L. Johnson, and D. P. Marshall, 2016: Dynamical attribution of recent variability in Atlantic overturning. J. Climate, 29, 33393352, https://doi.org/10.1175/JCLI-D-15-0727.1.

    • Search Google Scholar
    • Export Citation
  • Polo, I., J. Robson, R. Sutton, and M. A. Balmaseda, 2014: The importance of wind and buoyancy forcing for the boundary density variations and the geostrophic component of the AMOC at 26°N. J. Phys. Oceanogr., 44, 23872408, https://doi.org/10.1175/JPO-D-13-0264.1.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., S. Häkkinen, and S. A. Josey, 2008: Is oceanic heat transport significant in the climate system? Arctic–Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, R. R. Dickson, B. Hansen, and P. Rhines, Eds., Springer, 87–109.

  • Rintoul, S. R., 2018: The global influence of localized dynamics in the Southern Ocean. Nature, 558, 209218, https://doi.org/10.1038/s41586-018-0182-3.

    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., and Coauthors, 2013: Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 40, 51645170, https://doi.org/10.1002/grl.50930.

    • Search Google Scholar
    • Export Citation
  • Rousselet, L., P. Cessi, and G. Forget, 2020: Routes of the upper branch of the Atlantic meridional overturning circulation according to an ocean state estimate. Geophys. Res. Lett., 47, e2020GL089137, https://doi.org/10.1029/2020GL089137.

    • Search Google Scholar
    • Export Citation
  • Rousselet, L., P. Cessi, and M. R. Mazloff, 2023: What controls the partition between the cold and warm routes in the meridional overturning circulation? J. Phys. Oceanogr., 53, 215233, https://doi.org/10.1175/JPO-D-21-0308.1.

    • Search Google Scholar
    • Export Citation
  • Roussenov, V. M., R. G. Williams, C. W. Hughes, and R. J. Bingham, 2008: Boundary wave communication of bottom pressure and overturning changes for the North Atlantic. J. Geophys. Res., 113, C08042, https://doi.org/10.1029/2007JC004501.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary Jr., 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Search Google Scholar
    • Export Citation
  • Smith, T., and P. Heimbach, 2019: Atmospheric origins of variability in the South Atlantic meridional overturning circulation. J. Climate, 32, 14831500, https://doi.org/10.1175/JCLI-D-18-0311.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and D. Nieves, 2020: Wind-forced variability of the remote meridional overturning circulation. J. Phys. Oceanogr., 50, 455469, https://doi.org/10.1175/JPO-D-19-0190.1.

    • Search Google Scholar
    • Export Citation
  • Srokosz, M. A., and H. L. Bryden, 2015: Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348, 1255575, https://doi.org/10.1126/science.1255575.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and B. Dong, 2012: Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci., 5, 788792, https://doi.org/10.1038/ngeo1595.

    • Search Google Scholar
    • Export Citation
  • Thomas, M. D., and X. Zhai, 2013: Eddy‐induced variability of the meridional overturning circulation in a model of the North Atlantic. Geophys. Res. Lett., 40, 27422747, https://doi.org/10.1002/grl.50532.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., D. Brickman, and B. J. W. Greenan, 2019: Characteristic evolution of the Atlantic meridional overturning circulation from 1990 to 2015: An eddy-resolving ocean model study. Deep-Sea Res. I, 149, 103056, https://doi.org/10.1016/j.dsr.2019.06.002.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., 2010: Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett., 37, L06602, https://doi.org/10.1029/2010GL042372.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013: Two decades of the Atlantic meridional overturning circulation: Anatomy, variations, extremes, prediction, and overcoming its limitations. J. Climate, 26, 71677186, https://doi.org/10.1175/JCLI-D-12-00478.1.

    • Search Google Scholar
    • Export Citation
  • Xu, X., E. P. Chassignet, W. E. Johns, W. J. Schmitz Jr., and E. J. Metzger, 2014: Intraseasonal to interannual variability of the Atlantic meridional overturning circulation from eddy‐resolving simulations and observations. J. Geophys. Res. Oceans, 119, 51405159, https://doi.org/10.1002/2014JC009994.

    • Search Google Scholar
    • Export Citation
  • Yang, J., 2015: Local and remote wind stress forcing of the seasonal variability of the Atlantic meridional overturning circulation (AMOC) transport at 26.5°N. J. Geophys. Res. Oceans, 120, 24882503, https://doi.org/10.1002/2014JC010317.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., and Coauthors, 2021: An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation. Sci. Adv., 7, eabh3592, https://doi.org/10.1126/sciadv.abh3592.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, https://doi.org/10.1029/2010GL044474.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., and W. Johns, 2014a: Wind-driven seasonal cycle of the Atlantic meridional overturning circulation. J. Phys. Oceanogr., 44, 15411562, https://doi.org/10.1175/JPO-D-13-0144.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., and W. Johns, 2014b: Wind‐forced interannual variability of the Atlantic meridional overturning circulation at 26.5°N. J. Geophys. Res. Oceans, 119, 24032419, https://doi.org/10.1002/2013JC009407.

    • Search Google Scholar
    • Export Citation
  • Zou, S., and M. S. Lozier, 2016: Breaking the linkage between Labrador Sea water production and its advective export to the subtropical gyre. J. Phys. Oceanogr., 46, 21692182, https://doi.org/10.1175/JPO-D-15-0210.1.

    • Search Google Scholar
    • Export Citation
  • Zou, S., M. S. Lozier, and M. Buckley, 2019: How is meridional coherence maintained in the lower limb of the Atlantic meridional overturning circulation? Geophys. Res. Lett., 46, 244252, https://doi.org/10.1029/2018GL080958.

    • Search Google Scholar
    • Export Citation
  • Zou, S., M. S. Lozier, and X. Xu, 2020: Latitudinal structure of the meridional overturning circulation variability on interannual to decadal time scales in the North Atlantic Ocean. J. Climate, 33, 38453862, https://doi.org/10.1175/JCLI-D-19-0215.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 644 644 43
Full Text Views 231 231 27
PDF Downloads 248 248 24