Characteristics of the Kinetic Energy Spectra in the Subpolar North Atlantic

Junwei Chai aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bHorn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland

Search for other papers by Junwei Chai in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6735-2017
and
Jian Zhao bHorn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland

Search for other papers by Jian Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6458-5146
Restricted access

Abstract

The subpolar North Atlantic is known to have rich mesoscale and submesoscale variations; however, their spectral characteristics have not been documented in observations. This study documents the kinetic energy (KE) spectra using acoustic Doppler current profiler measurements that cover both the Iceland Basin and the Irminger Sea. The KE spectrum is partitioned into geostrophically balanced motions and unbalanced motions. The results reveal that balanced motions dominate the KE spectra. The unbalanced motions enhance in spring and fall to flatten the spectra and dominate small-scale (<50 km) energy, though uncertainty is high due to measurement noise and method assumptions. In addition, the dynamical framework that drives the balanced motions undergoes distinct seasonal shifts. In the spring and summer seasons of the Iceland Basin, as well as the summer season of the Irminger Sea, the wavenumber spectra of balanced motions exhibit a slope of approximately −3, consistent with the internal quasigeostrophic turbulence theory. Conversely, in the fall season of the Iceland Basin and the spring and fall seasons of the Irminger Sea, the wavenumber spectra of geostrophic balanced motions have a slope close to −2, consistent with surface quasigeostrophic turbulence theory. Additionally, we have found that the intensity of mesoscale eddies in the spring season can modulate both the slope and intensity of the wavenumber spectra of geostrophic balanced flows.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Zhao, jianzhao@umces.edu

Abstract

The subpolar North Atlantic is known to have rich mesoscale and submesoscale variations; however, their spectral characteristics have not been documented in observations. This study documents the kinetic energy (KE) spectra using acoustic Doppler current profiler measurements that cover both the Iceland Basin and the Irminger Sea. The KE spectrum is partitioned into geostrophically balanced motions and unbalanced motions. The results reveal that balanced motions dominate the KE spectra. The unbalanced motions enhance in spring and fall to flatten the spectra and dominate small-scale (<50 km) energy, though uncertainty is high due to measurement noise and method assumptions. In addition, the dynamical framework that drives the balanced motions undergoes distinct seasonal shifts. In the spring and summer seasons of the Iceland Basin, as well as the summer season of the Irminger Sea, the wavenumber spectra of balanced motions exhibit a slope of approximately −3, consistent with the internal quasigeostrophic turbulence theory. Conversely, in the fall season of the Iceland Basin and the spring and fall seasons of the Irminger Sea, the wavenumber spectra of geostrophic balanced motions have a slope close to −2, consistent with surface quasigeostrophic turbulence theory. Additionally, we have found that the intensity of mesoscale eddies in the spring season can modulate both the slope and intensity of the wavenumber spectra of geostrophic balanced flows.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Zhao, jianzhao@umces.edu
Save
  • Ajayi, A., J. Le Sommer, E. Chassignet, J.-M. Molines, X. Xu, A. Albert, and E. Cosme, 2020: Spatial and temporal variability of the North Atlantic eddy field from two kilometric-resolution ocean models. J. Geophys. Res. Oceans, 125, e2019JC015827, https://doi.org/10.1029/2019JC015827.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1953: The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.

  • Bendat, J., and A. Piersol, 2010: Random Data: Analysis and Measurement Procedures. 4th ed. Wiley, 604 pp.

  • Blumen, W., 1978: Uniform potential vorticity flow: Part II. A model of wave interactions. J. Atmos. Sci., 35, 784789, https://doi.org/10.1175/1520-0469(1978)035<0784:UPVFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., J. Callies, and R. Ferrari, 2014: Wave–vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, https://doi.org/10.1017/jfm.2014.488.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., M. Kuang, and E. G. Tabak, 2017: Anisotropic Helmholtz and wave–vortex decomposition of one-dimensional spectra. J. Fluid Mech., 815, 361387, https://doi.org/10.1017/jfm.2017.57.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale (1–200 km). J. Phys. Oceanogr., 43, 24562474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Search Google Scholar
    • Export Citation
  • Cao, H., Z. Jing, B. Fox‐Kemper, T. Yan, and Y. Qi, 2019: Scale transition from geostrophic motions to internal waves in the northern South China Sea. J. Geophys. Res. Oceans, 124, 93649383, https://doi.org/10.1029/2019JC015575.

    • Search Google Scholar
    • Export Citation
  • Chafik, L., T. Rossby, and C. Schrum, 2014: On the spatial structure and temporal variability of poleward transport between Scotland and Greenland. J. Geophys. Res. Oceans, 119, 824841, https://doi.org/10.1002/2013JC009287.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., C. B. Rocha, S. T. Gille, D. Menemenlis, and M. Passaro, 2019: Characterizing the transition from balanced to unbalanced motions in the Southern California Current. J. Geophys. Res. Oceans, 124, 20882109, https://doi.org/10.1029/2018JC014583.

    • Search Google Scholar
    • Export Citation
  • Childers, K. H., C. N. Flagg, T. Rossby, and C. Schrum, 2015: Directly measured currents and estimated transport pathways of Atlantic water between 59.5°N and the Iceland–Faroes–Scotland Ridge. Tellus, 67A, 28067, https://doi.org/10.3402/tellusa.v67.28067.

    • Search Google Scholar
    • Export Citation
  • de Jong, M., and L. de Steur, 2016: Strong winter cooling over the Irminger Sea in winter 2014–2015, exceptional deep convection, and the emergence of anomalously low SST. Geophys. Res. Lett., 43, 71067113, https://doi.org/10.1002/2016GL069596.

    • Search Google Scholar
    • Export Citation
  • de Jong, M., H. van Aken, K. Våge, and P. Pickart, 2012: Convective mixing in the central Irminger Sea: 2002–2010. Deep-Sea Res. I, 63, 3651, https://doi.org/10.1016/j.dsr.2012.01.003.

    • Search Google Scholar
    • Export Citation
  • de Jong, M., M. Oltmanns, J. Karstensen, and L. de Steur, 2018: Deep convection in the Irminger Sea observed with a dense mooring array. Oceanography, 31, 5059, https://doi.org/10.5670/oceanog.2018.109.

    • Search Google Scholar
    • Export Citation
  • Fan, X., U. Send, P. Testor, J. Karstensen, and P. Lherminier, 2013: Observations of Irminger Sea anticyclonic eddies. J. Phys. Oceanogr., 43, 805823, https://doi.org/10.1175/JPO-D-11-0155.1.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and C. Ubelmann, 2014: On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J. Atmos. Oceanic Technol., 31, 560568, https://doi.org/10.1175/JTECH-D-13-00109.1.

    • Search Google Scholar
    • Export Citation
  • Hátún, H., C. C. Eriksen, and P. B. Rhines, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854, https://doi.org/10.1175/2007JPO3567.1.

    • Search Google Scholar
    • Export Citation
  • Knutsen, Ø., H. Svendsen, S. Østerhus, T. Rossby, and B. Hansen, 2005: Direct measurements of the mean flow and eddy kinetic energy structure of the upper ocean circulation in the NE Atlantic. Geophys. Res. Lett., 32, L14604, https://doi.org/10.1029/2005GL023615.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, https://doi.org/10.1175/JPO2840.1.

    • Search Google Scholar
    • Export Citation
  • Le Bras, I. A.-A., J. Callies, F. Straneo, T. C. Biló, J. Holte, and H. L. Johnson, 2022: Slantwise convection in the Irminger Sea. J. Geophys. Res. Oceans, 127, e2022JC019071, https://doi.org/10.1029/2022JC019071.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., P. Klein, B. L. Hua, and G. Dibarboure, 2008: Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory? J. Phys. Oceanogr., 38, 11371142, https://doi.org/10.1175/2007JPO3806.1.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., E. D’Asaro, C. Lee, and M. J. Perry, 2012: Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science, 337, 5458, https://doi.org/10.1126/science.1218740.

    • Search Google Scholar
    • Export Citation
  • Martin, A. P., I. P. Wade, K. J. Richards, and K. J. Heywood, 1998: The prime eddy. J. Mar. Res., 56, 439462, https://doi.org/10.1357/002224098321822375.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Morrow, R., and Coauthors, 2019: Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) mission. Front. Mar. Sci., 6, 232, https://doi.org/10.3389/fmars.2019.00232.

    • Search Google Scholar
    • Export Citation
  • Omand, M. M., E. A. D’Asaro, C. M. Lee, M. J. Perry, N. Briggs, I. Cetinić, and A. Mahadevan, 2015: Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science, 348, 222225, https://doi.org/10.1126/science.1260062.

    • Search Google Scholar
    • Export Citation
  • Pearson, J., and Coauthors, 2020: Biases in structure functions from observations of submesoscale flows. J. Geophys. Res. Oceans, 125, e2019JC015769, https://doi.org/10.1029/2019JC015769.

    • Search Google Scholar
    • Export Citation
  • Qiu, T., T. Nakano, S. Chen, and P. Klein, 2017: Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nat. Commun., 8, 14055, https://doi.org/10.1038/ncomms14055.

    • Search Google Scholar
    • Export Citation
  • Qiu, T., T. Nakano, S. Chen, and P. Klein, 2018: Seasonality in transition scale from balanced to unbalanced motions in the World Ocean. J. Phys. Oceanogr., 48, 591605, https://doi.org/10.1175/JPO-D-17-0169.1.

    • Search Google Scholar
    • Export Citation
  • Read, J. F., and R. T. Pollard, 2001: A long-lived eddy in the Iceland Basin 1998. J. Geophys. Res., 106, 11 41111 421, https://doi.org/10.1029/2000JC000492.

    • Search Google Scholar
    • Export Citation
  • Rieck, J. K., C. W. Böning, and K. Getzlaff, 2019: The nature of eddy kinetic energy in the Labrador Sea: Different types of mesoscale eddies, their temporal variability, and impact on deep convection. J. Phys. Oceanogr., 49, 20752094, https://doi.org/10.1175/JPO-D-18-0243.1.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016a: Mesoscale to submesoscale wavenumber spectra in Drake Passage. J. Phys. Oceanogr., 46, 601620, https://doi.org/10.1175/JPO-D-15-0087.1.

    • Search Google Scholar
    • Export Citation
  • Rocha, C. B., S. T. Gille, T. K. Chereskin, and D. Menemenlis, 2016b: Seasonality of submesoscale dynamics in the Kuroshio Extension. Geophys. Res. Lett., 43, 11 30411 311, https://doi.org/10.1002/2016GL071349.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., G. Reverdin, L. Chafik, and H. Søiland, 2017: A direct estimate of poleward volume, heat, and freshwater fluxes at 59.5°N between Greenland and Scotland. J. Geophys. Res. Oceans, 122, 58705887, https://doi.org/10.1002/2017JC012835.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., and P. Klein, 2012: SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J. Phys. Oceanogr., 42, 12331241, https://doi.org/10.1175/JPO-D-11-0180.1.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, Y. Sasai, and B. Qiu, 2017: Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean. Ocean Dyn., 67, 11951216, https://doi.org/10.1007/s10236-017-1083-y.

    • Search Google Scholar
    • Export Citation
  • Savage, A. C., and Coauthors, 2017: Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies. J. Geophys. Res. Oceans, 122, 25192538, https://doi.org/10.1002/2016JC012331.

    • Search Google Scholar
    • Export Citation
  • Shoosmith, D. R., P. L. Richardson, A. S. Bower, and H. T. Rossby, 2005: Discrete eddies in the northern North Atlantic as observed by looping RAFOS floats. Deep-Sea Res. II, 52, 627650, https://doi.org/10.1016/j.dsr2.2004.12.011.

    • Search Google Scholar
    • Export Citation
  • Soares, S. M., S. T. Gille, T. K. Chereskin, E. Firing, J. Hummon, and C. B. Rocha, 2022: Transition from balanced to unbalanced motion in the eastern tropical Pacific. J. Phys. Oceanogr., 52, 17751795, https://doi.org/10.1175/JPO-D-21-0139.1.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tagklis, F., A. Bracco, T. Ito, and R. M. Castelao, 2020: Submesoscale modulation of deep water formation in the Labrador Sea. Sci. Rep., 10, 17489, https://doi.org/10.1038/s41598-020-74345-w.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Torres, H. S., P. Klein, D. Menemenlis, B. Qiu, Z. Su, J. Wang, S. Chen, and L. Fu, 2018: Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J. Geophys. Res. Oceans, 123, 80848105, https://doi.org/10.1029/2018JC014438.

    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., C. N. Flagg, K. Donohue, and H. T. Rossby, 2010: Wavenumber spectrum in the Gulf Stream from shipboard ADCP observations and comparison with altimetry measurements. J. Phys. Oceanogr., 40, 840844, https://doi.org/10.1175/2009JPO4330.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., G. R. Flierl, J. H. LaCasce, J. L. McClean, and A. Mahadevan, 2013: Reconstructing the ocean’s interior from surface data. J. Phys. Oceanogr., 43, 16111626, https://doi.org/10.1175/JPO-D-12-0204.1.

    • Search Google Scholar
    • Export Citation
  • Xu, X., E. P. Chassignet, A. J. Wallcraft, B. K. Arbic, M. C. Buijsman, and M. Solano, 2022: On the spatial variability of the mesoscale sea surface height wavenumber spectra in the Atlantic Ocean. J. Geophys. Res. Oceans, 127, e2022JC018769, https://doi.org/10.1029/2022JC018769.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and C. B. Rocha, 2018: Internal gravity waves and meso/submesoscale currents in the ocean: Anticipating high-resolution observations from the SWOT Swath Altimeter Mission. Bull. Amer. Meteor. Soc., 99, ES155ES157, https://doi.org/10.1175/BAMS-D-18-0133.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., X. Zhang, B. Qiu, W. Zhao, C. Zhou, X. Huang, and J. Tian, 2021: Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays. J. Phys. Oceanogr., 51, 187206, https://doi.org/10.1175/JPO-D-20-0100.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., A. Bower, J. Yang, X. Lin, and C. Zhou, 2018a: Structure and formation of anticyclonic eddies in the Iceland Basin. J. Geophys. Res. Oceans, 123, 53415359, https://doi.org/10.1029/2018JC013886.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., A. Bower, J. Yang, X. Lin, and N. P. Holliday, 2018b: Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic. Nat. Commun., 9, 1124, https://doi.org/10.1038/s41467-018-03134-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 580 580 32
Full Text Views 319 319 4
PDF Downloads 296 296 4