The Role of Bottom Friction in Mediating the Response of the Weddell Gyre Circulation to Changes in Surface Stress and Buoyancy Fluxes

Julia Neme aClimate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
bAustralian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Julia Neme in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3573-996X
,
Matthew H. England bAustralian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, New South Wales, Australia
cCentre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
,
Andrew McC. Hogg dResearch School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
,
Hemant Khatri eDepartment of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
fAtmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Hemant Khatri in
Current site
Google Scholar
PubMed
Close
, and
Stephen M. Griffies fAtmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
gNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Weddell Gyre is one of the dominant features of the Southern Ocean circulation and its dynamics have been linked to processes of climatic relevance. Variability in the strength of the gyre’s horizontal transport has been linked to heat transport toward the Antarctic margins and changes in the properties and rates of export of bottom waters from the Weddell Sea region to the abyssal global ocean. However, the precise physical mechanisms that force variability in the Weddell’s lateral circulation across different time scales remain unknown. In this study, we use a barotropic vorticity budget from a mesoscale eddy active model simulation to attribute changes in gyre strength to variability in possible driving processes. We find that the Weddell Gyre’s circulation is sensitive to bottom friction associated with the overflowing dense waters at its western boundary. In particular, an increase in the production of dense waters at the southwestern continental shelf strengthens the bottom flow at the gyre’s western boundary, yet this drives a weakening of the depth-integrated barotropic circulation via increased bottom friction. Strengthening surface winds initially accelerate the gyre, but within a few years the response reverses once dense water production and export increases. These results reveal that the gyre can weaken in response to stronger surface winds, putting into question the traditional assumption of a direct relationship between surface stress and gyre strength in regions where overflowing dense water forms part of the depth-integrated flow.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Julia Neme, j.neme@unsw.edu.au

Abstract

The Weddell Gyre is one of the dominant features of the Southern Ocean circulation and its dynamics have been linked to processes of climatic relevance. Variability in the strength of the gyre’s horizontal transport has been linked to heat transport toward the Antarctic margins and changes in the properties and rates of export of bottom waters from the Weddell Sea region to the abyssal global ocean. However, the precise physical mechanisms that force variability in the Weddell’s lateral circulation across different time scales remain unknown. In this study, we use a barotropic vorticity budget from a mesoscale eddy active model simulation to attribute changes in gyre strength to variability in possible driving processes. We find that the Weddell Gyre’s circulation is sensitive to bottom friction associated with the overflowing dense waters at its western boundary. In particular, an increase in the production of dense waters at the southwestern continental shelf strengthens the bottom flow at the gyre’s western boundary, yet this drives a weakening of the depth-integrated barotropic circulation via increased bottom friction. Strengthening surface winds initially accelerate the gyre, but within a few years the response reverses once dense water production and export increases. These results reveal that the gyre can weaken in response to stronger surface winds, putting into question the traditional assumption of a direct relationship between surface stress and gyre strength in regions where overflowing dense water forms part of the depth-integrated flow.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Julia Neme, j.neme@unsw.edu.au
Save
  • Abrahamsen, E. P., and Coauthors, 2019: Stabilization of dense Antarctic water supply to the Atlantic Ocean overturning circulation. Nat. Climate Change, 9, 742746, https://doi.org/10.1038/s41558-019-0561-2.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284, https://doi.org/10.1016/j.ocemod.2003.09.003.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and Coauthors, 2019: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Search Google Scholar
    • Export Citation
  • Auger, M., J.-B. Sallée, P. Prandi, and A. C. Naveira Garabato, 2022: Subpolar Southern Ocean seasonal variability of the geostrophic circulation from multi-mission satellite altimetry. J. Geophys. Res. Oceans, 127, e2021JC018096, https://doi.org/10.1029/2021JC018096.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., V. M. Kamenkovich, and A. Krupitsky, 1998: On the utility and disutility of JEBAR. J. Phys. Oceanogr., 28, 519526, https://doi.org/10.1175/1520-0485(1998)028<0519:OTUADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Couldrey, M. P., L. Jullion, A. C. Naveira Garabato, C. Rye, L. Herráiz-Borreguero, P. J. Brown, M. P. Meredith, and K. L. Speer, 2013: Remotely induced warming of Antarctic bottom water in the eastern Weddell Gyre. Geophys. Res. Lett., 40, 27552760, https://doi.org/10.1002/grl.50526.

    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. van den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, https://doi.org/10.1038/nature12567.

    • Search Google Scholar
    • Export Citation
  • Dotto, T. S., and Coauthors, 2018: Variability of the Ross Gyre, Southern Ocean: Drivers and responses revealed by satellite altimetry. Geophys. Res. Lett., 45, 61956204, https://doi.org/10.1029/2018GL078607.

    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., M. Hoppema, G. Rohardt, O. Boebel, O. Klatt, and A. Wisotzki, 2011: Warming of deep and abyssal water masses along the Greenwich Meridian on decadal time scales: The Weddell gyre as a heat buffer. Deep-Sea Res. II, 58, 25092523, https://doi.org/10.1016/j.dsr2.2011.06.007.

    • Search Google Scholar
    • Export Citation
  • Foster, T. D., and E. C. Carmack, 1976: Frontal zone mixing and Antarctic Bottom Water formation in the Southern Weddell Sea. Deep-Sea Res. Oceanogr. Abstr., 23, 301317, https://doi.org/10.1016/0011-7471(76)90872-X.

    • Search Google Scholar
    • Export Citation
  • Golledge, N. R., D. E. Kowalewski, T. R. Naish, R. H. Levy, C. J. Fogwill, and E. G. W. Gasson, 2015: The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526, 421425, https://doi.org/10.1038/nature15706.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. Huber, D. McKee, and M. Visbeck, 2010: A seasonal cycle in the export of bottom water from the Weddell Sea. Nat. Geosci., 3, 551556, https://doi.org/10.1038/ngeo916.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. A. Huber, and E. P. Abrahamsen, 2020: Interannual variability of the outflow of Weddell Sea bottom water. Geophys. Res. Lett., 47, e2020GL087014, https://doi.org/10.1029/2020GL087014.

    • Search Google Scholar
    • Export Citation
  • Goyal, R., A. Sen Gupta, M. Jucker, and M. H. England, 2021: Historical and projected changes in the Southern Hemisphere surface westerlies. Geophys. Res. Lett., 48, e2020GL090849, https://doi.org/10.1029/2020GL090849.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128%3C2935:BFWASL%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the ocean model intercomparison project. Geosci. Model Dev., 9, 32313296, https://doi.org/10.5194/gmd-9-3231-2016.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., A. Adcroft, and R. Hallberg, 2020: A primer on the vertical Lagrangian-remap method in ocean models based on finite volume generalized vertical coordinates. J. Adv. Model. Earth Syst., 12, e2019MS001954, https://doi.org/10.1029/2019MS001954.

    • Search Google Scholar
    • Export Citation
  • Grooms, I., N. Loose, R. Abernathey, J. Steinberg, S. D. Bachman, G. Marques, A. P. Guillaumin, and E. Yankovsky, 2021: Diffusion-based smoothers for spatial filtering of gridded geophysical data. J. Adv. Model. Earth Syst., 13, e2021MS002552, https://doi.org/10.1029/2021MS002552.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, https://doi.org/10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., and B. Gayen, 2020: Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett., 47, e2020GL088539, https://doi.org/10.1029/2020GL088539.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., 1973: Baroclinic and topographic influences on the transport in western boundary currents. Geophys. Fluid Dyn., 4, 187210, https://doi.org/10.1080/03091927208236095.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2000: A theoretical reason to expect inviscid western boundary currents in realistic oceans. Ocean Modell., 2, 7383, https://doi.org/10.1016/S1463-5003(00)00011-1.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and B. A. de Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712885, https://doi.org/10.1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huneke, W. G. C., A. K. Morrison, and A. M. Hogg, 2022: Spatial and subannual variability of the Antarctic Slope Current in an eddying ocean–sea ice model. J. Phys. Oceanogr., 52, 347361, https://doi.org/10.1175/JPO-D-21-0143.1.

    • Search Google Scholar
    • Export Citation
  • Jullion, L., and Coauthors, 2014: The contribution of the Weddell Gyre to the lower limb of the global overturning circulation. J. Geophys. Res. Oceans, 119, 33573377, https://doi.org/10.1002/2013JC009725.

    • Search Google Scholar
    • Export Citation
  • Khatri, H., S. M. Griffies, B. A. Storer, M. Buzzicotti, H. Aluie, M. Sonnewald, R. Dussin, and A. E. Shao, 2023: A scale-dependent analysis of the barotropic vorticity budget in a global ocean simulation. ESS Open Archive, https://doi.org/10.22541/essoar.168394747.71837050/v1.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Search Google Scholar
    • Export Citation
  • Lago, V., and M. H. England, 2019: Projected slowdown of Antarctic bottom water formation in response to amplified meltwater contributions. J. Climate, 32, 63196335, https://doi.org/10.1175/JCLI-D-18-0622.1.

    • Search Google Scholar
    • Export Citation
  • Le Corre, M., J. Gula, and A.-M. Tréguier, 2020: Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model. Ocean Sci., 16, 451468, https://doi.org/10.5194/os-16-451-2020.

    • Search Google Scholar
    • Export Citation
  • Le Paih, N., T. Hattermann, O. Boebel, T. Kanzow, C. Lüpkes, G. Rohardt, V. Strass, and S. Herbette, 2020: Coherent seasonal acceleration of the Weddell Sea boundary current system driven by upstream winds. J. Geophys. Res. Oceans, 125, e2020JC016316, https://doi.org/10.1029/2020JC016316.

    • Search Google Scholar
    • Export Citation
  • Leach, H., V. Strass, and B. Cisewski, 2011: Modification by lateral mixing of the warm deep water entering the Weddell Sea in the Maud Rise region. Ocean Dyn., 61, 5168, https://doi.org/10.1007/s10236-010-0342-y.

    • Search Google Scholar
    • Export Citation
  • Li, Q., M. H. England, A. M. Hogg, S. R. Rintoul, and A. K. Morrison, 2023: Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature, 615, 841847, https://doi.org/10.1038/s41586-023-05762-w.

    • Search Google Scholar
    • Export Citation
  • Loose, N., and Coauthors, 2022: GCM-Filters: A Python package for diffusion-based spatial filtering of gridded data. J. Open Source Software, 7, 3947, https://doi.org/10.21105/joss.03947.

    • Search Google Scholar
    • Export Citation
  • McKee, D. C., X. Yuan, A. L. Gordon, B. A. Huber, and Z. Dong, 2011: Climate impact on interannual variability of Weddell Sea bottom water. J. Geophys. Res., 116, C05020, https://doi.org/10.1029/2010JC006484.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., M. P. Meredith, E. P. Abrahamsen, M. A. Morales Maqueda, D. Jones, and A. C. Naveira Garabato, 2016: Wind-driven export of Weddell Sea slope water. J. Geophys. Res. Oceans, 121, 75307546, https://doi.org/10.1002/2016JC011757.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., 2013: Replenishing the abyss. Nat. Geosci., 6, 166167, https://doi.org/10.1038/ngeo1743.

  • Meredith, M. P., A. C. Naveira Garabato, A. L. Gordon, and G. C. Johnson, 2008: Evolution of the deep and bottom waters of the Scotia Sea, Southern Ocean, during 1995–2005. J. Climate, 21, 33273343, https://doi.org/10.1175/2007JCLI2238.1.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. L. Gordon, A. C. Naveira Garabato, E. P. Abrahamsen, B. A. Huber, L. Jullion, and H. J. Venables, 2011: Synchronous intensification and warming of Antarctic Bottom Water outflow from the Weddell Gyre. Geophys. Res. Lett., 38, L03603, https://doi.org/10.1029/2010GL046265.

    • Search Google Scholar
    • Export Citation
  • Mertz, G., and D. G. Wright, 1992: Interpretations of the JEBAR term. J. Phys. Oceanogr., 22, 301305, https://doi.org/10.1175/1520-0485(1992)022<0301:IOTJT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morioka, Y., and S. K. Behera, 2021: Remote and local processes controlling decadal sea ice variability in the Weddell Sea. J. Geophys. Res. Oceans, 126, e2020JC017036, https://doi.org/10.1029/2020JC017036.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., W. G. Huneke, J. Neme, P. Spence, A. M. Hogg, M. H. England, and S. M. Griffies, 2023: Sensitivity of Antarctic shelf waters and abyssal overturning to local winds. J. Climate, 36, 64656479, https://doi.org/10.1175/JCLI-D-22-0858.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1950: On the wind-driven ocean circulation. J. Atmos. Sci., 7, 8093, https://doi.org/10.1175/1520-0469(1950)007%3C0080:OTWDOC%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Narayanan, A., S. T. Gille, M. R. Mazloff, and K. Murali, 2019: Water mass characteristics of the Antarctic margins and the production and seasonality of dense shelf water. J. Geophys. Res. Oceans, 124, 92779294, https://doi.org/10.1029/2018JC014907.

    • Search Google Scholar
    • Export Citation
  • Narayanan, A., S. T. Gille, M. R. Mazloff, M. D. du Plessis, K. Murali, and F. Roquet, 2023: Zonal distribution of circumpolar deep water transformation rates and its relation to heat content on Antarctic Shelves. J. Geophys. Res. Oceans, 128, e2022JC019310, https://doi.org/10.1029/2022JC019310.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., J. D. Zika, L. Jullion, P. J. Brown, P. R. Holland, M. P. Meredith, and S. Bacon, 2016: The thermodynamic balance of the Weddell Gyre. Geophys. Res. Lett., 43, 317325, https://doi.org/10.1002/2015GL066658.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., and Coauthors, 2019a: Phased response of the subpolar Southern Ocean to changes in circumpolar winds. Geophys. Res. Lett., 46, 60246033, https://doi.org/10.1029/2019GL082850.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., and Coauthors, 2019b: Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc. Natl. Acad. Sci. USA, 116, 13 23313 238, https://doi.org/10.1073/pnas.1904087116.

    • Search Google Scholar
    • Export Citation
  • Neme, J., M. H. England, and A. M. Hogg, 2021: Seasonal and interannual variability of the Weddell Gyre from a high-resolution global ocean-sea ice simulation during 1958–2018. J. Geophys. Res. Oceans, 126, e2021JC017662, https://doi.org/10.1029/2021JC017662.

    • Search Google Scholar
    • Export Citation
  • Neme, J., M. H. England, and A. M. Hogg, 2022: Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett., 49, e2022GL098820, https://doi.org/10.1029/2022GL098820.

    • Search Google Scholar
    • Export Citation
  • Newsom, E. R., C. M. Bitz, F. O. Bryan, R. Abernathey, and P. R. Gent, 2016: Southern Ocean deep circulation and heat uptake in a high-resolution climate model. J. Climate, 29, 25972619, https://doi.org/10.1175/JCLI-D-15-0513.1.

    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., S. Østerhus, K. Makinson, T. Gammelsrød, and E. Fahrbach, 2009: Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys., 47, RG3003, https://doi.org/10.1029/2007RG000250.

    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., W. M. Smethie Jr., G. Gebbie, A. L. Gordon, R. E. Sonnerup, M. J. Warner, and J. L. Bullister, 2018: A synoptic view of the ventilation and circulation of Antarctic bottom water from chlorofluorocarbons and natural tracers. Annu. Rev. Mar. Sci., 10, 503527, https://doi.org/10.1146/annurev-marine-121916-063414.

    • Search Google Scholar
    • Export Citation
  • Reeve, K. A., O. Boebel, V. Strass, T. Kanzow, and R. Gerdes, 2019: Horizontal circulation and volume transports in the Weddell Gyre derived from Argo float data. Prog. Oceanogr., 175, 263283, https://doi.org/10.1016/j.pocean.2019.04.006.

    • Search Google Scholar
    • Export Citation
  • Ryan, S., M. Schröder, O. Huhn, and R. Timmermann, 2016: On the warm inflow at the eastern boundary of the Weddell Gyre. Deep-Sea Res. I, 107, 7081, https://doi.org/10.1016/j.dsr.2015.11.002.

    • Search Google Scholar
    • Export Citation
  • Schoonover, J., and Coauthors, 2016: North Atlantic barotropic vorticity balances in numerical models. J. Phys. Oceanogr., 46, 289303, https://doi.org/10.1175/JPO-D-15-0133.1.

    • Search Google Scholar
    • Export Citation
  • Solodoch, A., A. Stewart, A. M. Hogg, A. Morrison, A. Kiss, A. Thompson, S. Purkey, and L. Cimoli, 2022: How does Antarctic bottom water cross the Southern Ocean? Geophys. Res. Lett., 49, e2021GL097211, https://doi.org/10.1029/2021GL097211.

    • Search Google Scholar
    • Export Citation
  • Sonnewald, M., C. Wunsch, and P. Heimbach, 2019: Unsupervised learning reveals geography of global ocean dynamical regions. Earth Space Sci., 6, 784794, https://doi.org/10.1029/2018EA000519.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015: Eddy-mediated transport of warm circumpolar deep water across the Antarctic shelf break. Geophys. Res. Lett., 42, 432440, https://doi.org/10.1002/2014GL062281.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2016: Eddy generation and jet formation via dense water outflows across the Antarctic continental slope. J. Phys. Oceanogr., 46, 37293750, https://doi.org/10.1175/JPO-D-16-0145.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., J. C. McWilliams, and A. Solodoch, 2021: On the role of bottom pressure torques in wind-driven gyres. J. Phys. Oceanogr., 51, 14411464, https://doi.org/10.1175/JPO-D-20-0147.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, K. D., and Coauthors, 2020: JRA55-do-based repeat year forcing datasets for driving ocean–sea-ice models. Ocean Modell., 147, 101557, https://doi.org/10.1016/j.ocemod.2019.101557.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Search Google Scholar
    • Export Citation
  • Styles, A. F., M. J. Bell, D. P. Marshall, and D. Storkey, 2022: Spurious forces can dominate the vorticity budget of ocean gyres on the C-grid. J. Adv. Model. Earth Syst., 14, e2021MS002884, https://doi.org/10.1029/2021MS002884.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, P. Spence, and K. J. Heywood, 2018: The Antarctic Slope Current in a changing climate. Rev. Geophys., 56, 741770, https://doi.org/10.1029/2018RG000624.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Search Google Scholar
    • Export Citation
  • Vernet, M., and Coauthors, 2019: The Weddell Gyre, Southern Ocean: Present knowledge and future challenges. Rev. Geophys., 57, 623708, https://doi.org/10.1029/2018RG000604.

    • Search Google Scholar
    • Export Citation
  • Waldman, R., and H. Giordani, 2023: Ocean barotropic vorticity balances: Theory and application to numerical models. J. Adv. Model. Earth Syst., 15, e2022MS003276, https://doi.org/10.1029/2022MS003276.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and M. Meredith, 2008: Density-driven Southern Hemisphere subpolar gyres in coupled climate models. Geophys. Res. Lett., 35, L14608, https://doi.org/10.1029/2008GL034344.

    • Search Google Scholar
    • Export Citation
  • Wilson, E. A., A. F. Thompson, A. L. Stewart, and S. Sun, 2022: Bathymetric control of subpolar gyres and the overturning circulation in the Southern Ocean. J. Phys. Oceanogr., 52, 205223, https://doi.org/10.1175/JPO-D-21-0136.1.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., 2015: Topographic coupling of the Atlantic overturning and gyre circulations. J. Phys. Oceanogr., 45, 12581284, https://doi.org/10.1175/JPO-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., C. Heuzé, and M. Mohrmann, 2022: Early winter triggering of the Maud Rise polynya. Geophys. Res. Lett., 49, e2021GL096246, https://doi.org/10.1029/2021GL096246.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., A. J. Meijers, M. P. Meredith, E. P. Abrahamsen, P. R. Holland, A. Silvano, J.-B. Sallée, and S. Østerhus, 2023: Slowdown of Antarctic bottom water export driven by climatic wind and sea-ice changes. Nat. Climate Change, 13, 701709, https://doi.org/10.1038/s41558-023-01695-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 480 480 15
Full Text Views 254 254 8
PDF Downloads 254 254 10