Air–Sea Coupling Feedbacks over Tropical Instability Waves

Ryan M. Holmes aSchool of Geosciences, University of Sydney, Sydney, New South Wales, Australia
bBureau of Meteorology, Sydney, New South Wales, Australia

Search for other papers by Ryan M. Holmes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6799-9109
,
Lionel Renault cLEGOS, University of Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France

Search for other papers by Lionel Renault in
Current site
Google Scholar
PubMed
Close
,
Lisa Maillard cLEGOS, University of Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France
eUniversity of Brest, Ifremer, CNRS, IRD, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Plouzané, France

Search for other papers by Lisa Maillard in
Current site
Google Scholar
PubMed
Close
, and
Julien Boucharel cLEGOS, University of Toulouse, IRD, CNRS, CNES, UPS, Toulouse, France
dDepartment of Atmospheric Sciences, SOEST, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Julien Boucharel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical instability waves (TIWs) are oceanic features that form around the equatorial Pacific cold tongue and influence the large-scale circulation and coupled climate variability including El Niño–Southern Oscillation. Local air–sea coupling over TIWs is thought to play an important role in the atmosphere and ocean’s energy and tracer budgets but is not well captured in coarse-resolution models. In this study, we isolate the impacts of TIW thermal (sea surface temperature–driven) and current (surface current–driven) feedbacks by removing TIW signatures in air–sea coupling fields in a high-resolution regional coupled model. The thermal feedback is found to damp TIW temperature variance by a factor of 2, associated both with the direct dependence of surface heat fluxes on SST (∼74%) and indirect impacts on surface winds (∼35%) and air temperature and humidity (∼−9%). These changes lead to cooling of the cold tongue SST by up to 0.1°C through reduced TIW-driven meridional heat fluxes and associated small changes in atmospheric circulation. The current feedback is decomposed into TIW (i.e., mesoscale) and mean (i.e., large-scale) components using separate experiments, with both having distinct impacts on TIWs and the mean state. The mesoscale current feedback reduces TIW eddy kinetic energy (EKE) by 22% through the eddy wind work, while the mean current feedback induces a further reduction of 8% by extracting energy from the mean currents and thus reducing barotropic EKE shear production. An improved understanding of small-scale tropical Pacific processes is needed to address biases in coarse-resolution models that impact their predictions and projections of Pacific climate variability and change.

Significance Statement

Tropical instability waves (TIWs) are oceanic features with ∼1000-km wavelengths that propagate westward on either side of the eastern equatorial Pacific cold tongue. TIWs drive lateral and vertical heat fluxes that impact several aspects of El Niño–Southern Oscillation. While climate models with a moderate, 1/4° ocean resolution can capture some TIW variability, they fail to properly represent many associated processes such as the impact of TIWs on the overlying atmosphere. Using sensitivity studies performed using a high-resolution regional coupled model, we study the impact of TIW air–sea coupling on the eastern Pacific climate system. Increased understanding of small-scale processes from studies such as this is essential to understand and address biases in models used for seasonal climate predictions and projections in the Pacific region.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan Holmes, ryan.holmes@bom.gov.au

Abstract

Tropical instability waves (TIWs) are oceanic features that form around the equatorial Pacific cold tongue and influence the large-scale circulation and coupled climate variability including El Niño–Southern Oscillation. Local air–sea coupling over TIWs is thought to play an important role in the atmosphere and ocean’s energy and tracer budgets but is not well captured in coarse-resolution models. In this study, we isolate the impacts of TIW thermal (sea surface temperature–driven) and current (surface current–driven) feedbacks by removing TIW signatures in air–sea coupling fields in a high-resolution regional coupled model. The thermal feedback is found to damp TIW temperature variance by a factor of 2, associated both with the direct dependence of surface heat fluxes on SST (∼74%) and indirect impacts on surface winds (∼35%) and air temperature and humidity (∼−9%). These changes lead to cooling of the cold tongue SST by up to 0.1°C through reduced TIW-driven meridional heat fluxes and associated small changes in atmospheric circulation. The current feedback is decomposed into TIW (i.e., mesoscale) and mean (i.e., large-scale) components using separate experiments, with both having distinct impacts on TIWs and the mean state. The mesoscale current feedback reduces TIW eddy kinetic energy (EKE) by 22% through the eddy wind work, while the mean current feedback induces a further reduction of 8% by extracting energy from the mean currents and thus reducing barotropic EKE shear production. An improved understanding of small-scale tropical Pacific processes is needed to address biases in coarse-resolution models that impact their predictions and projections of Pacific climate variability and change.

Significance Statement

Tropical instability waves (TIWs) are oceanic features with ∼1000-km wavelengths that propagate westward on either side of the eastern equatorial Pacific cold tongue. TIWs drive lateral and vertical heat fluxes that impact several aspects of El Niño–Southern Oscillation. While climate models with a moderate, 1/4° ocean resolution can capture some TIW variability, they fail to properly represent many associated processes such as the impact of TIWs on the overlying atmosphere. Using sensitivity studies performed using a high-resolution regional coupled model, we study the impact of TIW air–sea coupling on the eastern Pacific climate system. Increased understanding of small-scale processes from studies such as this is essential to understand and address biases in models used for seasonal climate predictions and projections in the Pacific region.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan Holmes, ryan.holmes@bom.gov.au
Save
  • An, S.-I., 2008: Interannual variations of the tropical ocean instability wave and ENSO. J. Climate, 21, 36803686, https://doi.org/10.1175/2008JCLI1701.1.

    • Search Google Scholar
    • Export Citation
  • Auclair, F., and Coauthors, 2022: Coastal and regional ocean community model. Zenodo, accessed 1 September 2021, https://doi.org/10.5281/zenodo.7415181.

  • Bai, W., H. Liu, P. Lin, X. Li, and F. Wang, 2023: Reconciling opposite trends in the observed and simulated equatorial Pacific zonal sea surface temperature gradient. Geosci. Lett., 10, 56, https://doi.org/10.1186/s40562-023-00309-3.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, and F. O. Bryan, 2020: The global sink of available potential energy by mesoscale air-sea interaction. J. Adv. Model. Earth Syst., 12, e2020MS002118, https://doi.org/10.1029/2020MS002118.

    • Search Google Scholar
    • Export Citation
  • Bye, J. A. T., 1985: Large-scale momentum exchange in the coupled atmosphere-ocean. Elsevier Oceanography Series, Vol. 40, Elsevier, 51–61, https://doi.org/10.1016/S0422-9894(08)70702-5.

  • Carton, J. A., G. A. Chepurin, and L. Chen, 2018: SODA3: A new ocean climate reanalysis. J. Climate, 31, 69676983, https://doi.org/10.1175/JCLI-D-18-0149.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495517, https://doi.org/10.1175/JPO3025.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, and M. M.-H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA/TM-2001-104606, Vol. 19, 54 pp., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010072848.pdf.

  • Conejero, C., L. Renault, F. Desbiolles, J. C. McWilliams, and H. Giordani, 2024: Near-surface atmospheric response to meso- and submesoscale current and thermal feedbacks. J. Phys. Oceanogr., 54, 823848, https://doi.org/10.1175/JPO-D-23-0211.1.

    • Search Google Scholar
    • Export Citation
  • Craig, A., S. Valcke, and L. Coquart, 2017: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0. Geosci. Model Dev., 10, 32973308, https://doi.org/10.5194/gmd-10-3297-2017.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and L. Thompson, 2006: Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys. Res. Lett., 33, L09604, https://doi.org/10.1029/2006GL025784.

    • Search Google Scholar
    • Export Citation
  • Deremble, B., N. Wienders, and W. K. Dewar, 2013: CheapAML: A simple, atmospheric boundary layer model for use in ocean-only model calculations. Mon. Wea. Rev., 141, 809821, https://doi.org/10.1175/MWR-D-11-00254.1.

    • Search Google Scholar
    • Export Citation
  • Desbiolles, F., A. N. Meroni, L. Renault, and C. Pasquero, 2023: Environmental control of wind response to sea surface temperature patterns in reanalysis dataset. J. Climate, 36, 38813893, https://doi.org/10.1175/JCLI-D-22-0373.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., S. Wahl, and J. J. Bates, 1993: The influence of sea surface temperature gradients on stratiform cloudiness along the equatorial front in the Pacific Ocean. J. Climate, 6, 11721180, https://doi.org/10.1175/1520-0442(1993)006<1172:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 16531667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H. A., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211, https://doi.org/10.1175/JPO2842.1.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and H. Dietze, 2009: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res., 114, C05023, https://doi.org/10.1029/2008JC005129.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Search Google Scholar
    • Export Citation
  • Graham, T., 2014: The importance of eddy permitting model resolution for simulation of the heat budget of tropical instability waves. Ocean Modell., 79, 2132, https://doi.org/10.1016/j.ocemod.2014.04.005.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and I.-S. Kang, 2011: Improvement of seasonal forecasts with inclusion of tropical instability waves on initial conditions. Climate Dyn., 36, 12771290, https://doi.org/10.1007/s00382-010-0743-0.

    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 15001506, https://doi.org/10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., and L. N. Thomas, 2015: The modulation of equatorial turbulence by tropical instability waves in a regional ocean model. J. Phys. Oceanogr., 45, 11551173, https://doi.org/10.1175/JPO-D-14-0209.1.

    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., and L. N. Thomas, 2016: Modulation of tropical instability wave intensity by equatorial Kelvin waves. J. Phys. Oceanogr., 46, 26232643, https://doi.org/10.1175/JPO-D-16-0064.1.

    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., L. N. Thomas, L. Thompson, and D. Darr, 2014: Potential vorticity dynamics of tropical instability vortices. J. Phys. Oceanogr., 44, 9951011, https://doi.org/10.1175/JPO-D-13-0157.1.

    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., S. McGregor, A. Santoso, and M. H. England, 2019: Contribution of tropical instability waves to ENSO irregularity. Climate Dyn., 52, 18371855, https://doi.org/10.1007/s00382-018-4217-0.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Huang, B., C. Liu, V. F. Banzon, E. Freeman, G. Graham, B. Hankins, T. M. Smith, and H.-M. Zhang, 2020: NOAA 0.25-degree daily Optimum Interpolation Sea Surface Temperature (OISST), version 2.1. NOAA National Centers for Environmental Information, accessed 10 October 2022, https://doi.org/10.25921/RE9P-PT57.

  • Hughes, C. W., and C. Wilson, 2008: Wind work on the geostrophic ocean circulation: An observational study of the effect of small scales in the wind stress. J. Geophys. Res., 113, C02016, https://doi.org/10.1029/2007JC004371.

    • Search Google Scholar
    • Export Citation
  • Im, S.-H., S.-I. An, M. Lengaigne, and Y. Noh, 2012: Seasonality of tropical instability waves and its feedback to the seasonal cycle in the tropical eastern Pacific. Sci. World J., 2012, 612048, https://doi.org/10.1100/2012/612048.

    • Search Google Scholar
    • Export Citation
  • Imada, Y., and M. Kimoto, 2012: Parameterization of tropical instability waves and examination of their impact on ENSO characteristics. J. Climate, 25, 45684581, https://doi.org/10.1175/JCLI-D-11-00233.1.

    • Search Google Scholar
    • Export Citation
  • Inoue, R., R.-C. Lien, J. N. Moum, R. C. Perez, and M. C. Gregg, 2019: Variations of equatorial shear, stratification, and turbulence within a tropical instability wave cycle. J. Geophys. Res. Oceans, 124, 18581875, https://doi.org/10.1029/2018JC014480.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2006: Temperature advection by tropical instability waves. J. Phys. Oceanogr., 36, 592605, https://doi.org/10.1175/JPO2870.1.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., M. F. Cronin, W. S. Kessler, and D. Shea, 2007: Observed horizontal temperature advection by tropical instability waves. Geophys. Res. Lett., 34, L09604, https://doi.org/10.1029/2007GL029416.

    • Search Google Scholar
    • Export Citation
  • Jousse, A., A. Hall, F. Sun, and J. Teixeira, 2016: Causes of WRF surface energy fluxes biases in a stratocumulus region. Climate Dyn., 46, 571584, https://doi.org/10.1007/s00382-015-2599-9.

    • Search Google Scholar
    • Export Citation
  • Jullien, S., S. Masson, V. Oerder, G. Samson, F. Colas, and L. Renault, 2020: Impact of ocean–atmosphere current feedback on ocean mesoscale activity: Regional variations and sensitivity to model resolution. J. Climate, 33, 25852602, https://doi.org/10.1175/JCLI-D-19-0484.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Larrañaga, M., L. Renault, and J. Jouanno, 2022: Partial control of the Gulf of Mexico dynamics by the current feedback to the atmosphere. J. Phys. Oceanogr., 52, 25152530, https://doi.org/10.1175/JPO-D-21-0271.1.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., L. Debreu, G. Madec, J. Demange, J. Molines, and M. Honnorat, 2015: Stability constraints for oceanic numerical models: Implications for the formulation of time and space discretizations. Ocean Modell., 92, 124148, https://doi.org/10.1016/j.ocemod.2015.06.006.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., G. Samson, J.-L. Redelsperger, H. Giordani, T. Brivoal, and G. Madec, 2021: A simplified atmospheric boundary layer model for an improved representation of air–sea interactions in eddying oceanic models: Implementation and first evaluation in NEMO (4.0). Geosci. Model Dev., 14, 543572, https://doi.org/10.5194/gmd-14-543-2021.

    • Search Google Scholar
    • Export Citation
  • Li, T., Y. Yu, B. An, Y. Luan, and K. Chen, 2023: Tropical instability waves in a high-resolution oceanic and coupled GCM. Ocean Modell., 182, 102169, https://doi.org/10.1016/j.ocemod.2023.102169.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, T. W., X. Xie, P. S. Polito, S.-P. Xie, and H. Hashizume, 2000: Atmospheric manifestation of tropical instability wave observed by QuikSCAT and tropical rain measuring mission. Geophys. Res. Lett., 27, 25452548, https://doi.org/10.1029/2000GL011545.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 23442360, https://doi.org/10.1175/JCLI3404.1.

    • Search Google Scholar
    • Export Citation
  • Ma, K., C. Liu, J. Xu, and F. Wang, 2024: Contrasts of bimodal tropical instability waves (TIWs)-induced wind stress perturbations in the Pacific Ocean among observations, ocean models, and coupled climate models. J. Oceanol. Limnol., 42, 123, https://doi.org/10.1007/s00343-023-2326-z.

    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Search Google Scholar
    • Export Citation
  • Maillard, L., J. Boucharel, and L. Renault, 2022a: Direct and rectified effects of tropical instability waves on the eastern tropical Pacific mean state in a regional ocean model. J. Phys. Oceanogr., 52, 18171834, https://doi.org/10.1175/JPO-D-21-0300.1.

    • Search Google Scholar
    • Export Citation
  • Maillard, L., J. Boucharel, M. F. Stuecker, F.-F. Jin, and L. Renault, 2022b: Modulation of the eastern equatorial Pacific seasonal cycle by tropical instability waves. Geophys. Res. Lett., 49, e2022GL100991, https://doi.org/10.1029/2022GL100991.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33, 753783, https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., X. Capet, C. Menkes, and S. Kennan, 2011: Submesoscale dynamics in tropical instability waves. Ocean Modell., 39, 3146, https://doi.org/10.1016/j.ocemod.2011.04.011.

    • Search Google Scholar
    • Export Citation
  • Masina, S., S. G. H. Philander, and A. B. G. Bush, 1999: An analysis of tropical instability waves in a numerical model of the Pacific Ocean: 2. Generation and energetics of the waves. J. Geophys. Res., 104, 29 63729 661, https://doi.org/10.1029/1999JC900226.

    • Search Google Scholar
    • Export Citation
  • Menkes, C. E. R., J. G. Vialard, S. C. Kennan, J.-P. Boulanger, and G. V. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36, 847865, https://doi.org/10.1175/JPO2904.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R.-C. Lien, A. Perlin, J. D. Nash, M. C. Gregg, and P. J. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, https://doi.org/10.1038/ngeo657.

    • Search Google Scholar
    • Export Citation
  • Oerder, V., F. Colas, V. Echevin, S. Masson, and F. Lemarié, 2018: Impacts of the mesoscale ocean-atmosphere coupling on the Peru-Chile ocean dynamics: The current-induced wind stress modulation. J. Geophys. Res. Oceans, 123, 812833, https://doi.org/10.1002/2017JC013294.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833838, https://doi.org/10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pezzi, L. P., J. Vialard, K. J. Richards, C. Menkes, and D. Anderson, 2004: Influence of ocean-atmosphere coupling on the properties of tropical instability waves. Geophys. Res. Lett., 31, L16306, https://doi.org/10.1029/2004GL019995.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, https://doi.org/10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Putrasahan, D. A., A. J. Miller, and H. Seo, 2013: Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio extension region. Dyn. Atmos. Oceans, 63, 6078, https://doi.org/10.1016/j.dynatmoce.2013.04.001.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016a: Control and stabilization of the gulf stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 34393453, https://doi.org/10.1175/JPO-D-16-0115.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016b: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and S. Masson, 2017: Satellite observations of imprint of oceanic current on wind stress by air-sea coupling. Sci. Rep., 7, 17747, https://doi.org/10.1038/s41598-017-17939-1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and J. Gula, 2018: Dampening of submesoscale currents by air-sea stress coupling in the Californian upwelling system. Sci. Rep., 8, 13388, https://doi.org/10.1038/s41598-018-31602-3.

    • Search Google Scholar
    • Export Citation
  • Renault, L., F. Lemarié, and T. Arsouze, 2019a: On the implementation and consequences of the oceanic currents feedback in ocean–atmosphere coupled models. Ocean Modell., 141, 101423, https://doi.org/10.1016/j.ocemod.2019.101423.

    • Search Google Scholar
    • Export Citation
  • Renault, L., P. Marchesiello, S. Masson, and J. C. McWilliams, 2019b: Remarkable control of western boundary currents by Eddy Killing, a mechanical air-sea coupling process. Geophys. Res. Lett., 46, 27432751, https://doi.org/10.1029/2018GL081211.

    • Search Google Scholar
    • Export Citation
  • Renault, L., S. Masson, V. Oerder, S. Jullien, and F. Colas, 2019c: Disentangling the mesoscale ocean-atmosphere interactions. J. Geophys. Res. Oceans, 124, 21642178, https://doi.org/10.1029/2018JC014628.

    • Search Google Scholar
    • Export Citation
  • Renault, L., S. Masson, T. Arsouze, G. Madec, and J. C. McWilliams, 2020: Recipes for how to force oceanic model dynamics. J. Adv. Model. Earth Syst., 12, e2019MS001715, https://doi.org/10.1029/2019MS001715.

    • Search Google Scholar
    • Export Citation
  • Renault, L., T. Arsouze, and J. Ballabrera-Poy, 2021: On the influence of the current feedback to the atmosphere on the western Mediterranean Sea dynamics. J. Geophys. Res. Oceans, 126, e2020JC016664, https://doi.org/10.1029/2020JC016664.

    • Search Google Scholar
    • Export Citation
  • Renault, L., S. Masson, V. Oerder, F. Colas, and J. C. McWilliams, 2023: Modulation of the oceanic mesoscale activity by the mesoscale thermal feedback to the atmosphere. J. Phys. Oceanogr., 53, 16511667, https://doi.org/10.1175/JPO-D-22-0256.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and B. Qiu, 2015: The atmospheric response to weak sea surface temperature fronts. J. Atmos. Sci., 72, 33563377, https://doi.org/10.1175/JAS-D-14-0212.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., 2017: Distinct influence of air–sea interactions mediated by mesoscale sea surface temperature and surface current in the Arabian Sea. J. Climate, 30, 80618080, https://doi.org/10.1175/JCLI-D-16-0834.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., M. Jochum, R. Murtugudde, A. J. Miller, and J. O. Roads, 2007: Feedback of tropical instability-wave-induced atmospheric variability onto the ocean. J. Climate, 20, 58425855, https://doi.org/10.1175/JCLI4330.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., R. Murtugudde, M. Jochum, and A. J. Miller, 2008: Modeling of mesoscale coupled ocean–atmosphere interaction and its feedback to ocean in the western Arabian Sea. Ocean Modell., 25, 120131, https://doi.org/10.1016/j.ocemod.2008.07.003.

    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, https://doi.org/10.1175/JPO-D-15-0086.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., and Coauthors, 2023: Ocean mesoscale and frontal-scale ocean–atmosphere interactions and influence on large-scale climate: A review. J. Climate, 36, 19812013, https://doi.org/10.1175/JCLI-D-21-0982.1.

    • Search Google Scholar
    • Export Citation
  • Sérazin, G., A. Di Luca, A. Sen Gupta, M. Rogé, N. C. Jourdain, D. Argüeso, and C. Y. S. Bull, 2021: East Australian cyclones and air-sea feedbacks. J. Geophys. Res. Atmos., 126, e2020JD034391, https://doi.org/10.1029/2020JD034391.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2021: A description of the Advanced Research WRF Model version 4.3. NCAR Tech. Note NCAR/TN-556+STR, 165 pp., https://doi.org/10.5065/1dfh-6p97.

  • Small, R. J., S.-P. Xie, and Y. Wang, 2003: Numerical simulation of atmospheric response to Pacific tropical instability waves. J. Climate, 16, 37233741, https://doi.org/10.1175/1520-0442(2003)016<3723:NSOART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Ocean, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., K. J. Richards, S.-P. Xie, P. Dutrieux, and T. Miyama, 2009: Damping of tropical instability waves caused by the action of surface currents on stress. J. Geophys. Res., 114, C04009, https://doi.org/10.1029/2008JC005147.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, and R. A. Tomas, 2019: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability? J. Climate, 32, 23972421, https://doi.org/10.1175/JCLI-D-18-0576.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, S. Larson, and R. A. Tomas, 2020: What drives upper-ocean temperature variability in coupled climate models and observations? J. Climate, 33, 577596, https://doi.org/10.1175/JCLI-D-19-0295.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007: Effect of sea surface temperature–wind stress coupling on baroclinic instability in the ocean. J. Phys. Oceanogr., 37, 10921097, https://doi.org/10.1175/JPO3045.1.

    • Search Google Scholar
    • Export Citation
  • Sroka, S., A. Czaja, and S. Chakravorty, 2022: Assessing the importance of mesoscale sea-surface temperature variations for surface turbulent cooling of the Kuroshio extension in wintertime. Quart. J. Roy. Meteor. Soc., 148, 27422754, https://doi.org/10.1002/qj.4333.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., H. Liu, P. Lin, Y.-h. Tseng, J. Small, and F. Bryan, 2019: The modeling of the north equatorial countercurrent in the Community Earth System Model and its oceanic component. J. Adv. Model. Earth Syst., 11, 531544, https://doi.org/10.1029/2018MS001521.

    • Search Google Scholar
    • Export Citation
  • Thum, N., S. K. Esbensen, D. B. Chelton, and M. J. McPhaden, 2002: Air–sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific. J. Climate, 15, 33613378, https://doi.org/10.1175/1520-0442(2002)015<3361:ASHEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and Coauthors, 2022: El Niño/Southern Oscillation inhibited by submesoscale ocean eddies. Nat. Geosci., 15, 112117, https://doi.org/10.1038/s41561-021-00890-2.

    • Search Google Scholar
    • Export Citation
  • Wei, Y., Y. Pei, and X. Kang, 2019: Assessing feedback of tropical instability wave-induced wind stress perturbations in the equatorial Pacific. Int. J. Climatol., 39, 16341643, https://doi.org/10.1002/joc.5906.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., 2023: The current feedback on stress modifies the Ekman buoyancy flux at fronts. J. Phys. Oceanogr., 53, 27372749, https://doi.org/10.1175/JPO-D-23-0005.1.

    • Search Google Scholar
    • Export Citation
  • Xue, A., W. Zhang, J. Boucharel, and F.-F. Jin, 2021: Anomalous tropical instability wave activity hindered the development of the 2016/2017 La Niña. J. Climate, 34, 55835600, https://doi.org/10.1175/JCLI-D-20-0399.1.

    • Search Google Scholar
    • Export Citation
  • Yung, C. K., and R. M. Holmes, 2023: On the contribution of transient diabatic processes to ocean heat transport and temperature variability. J. Phys. Oceanogr., 53, 29332951, https://doi.org/10.1175/JPO-D-23-0046.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. D. Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Mon. Wea. Rev., 144, 833860, https://doi.org/10.1175/MWR-D-15-0005.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1078 1078 377
Full Text Views 255 255 86
PDF Downloads 333 333 109