Observations of Tidally Driven Turbulence over Steep, Small-Scale Topography Embedded in the Tasman Slope

Olavo B. Marques aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Olavo B. Marques in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7438-9616
,
Matthew H. Alford aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
,
Robert Pinkel aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Robert Pinkel in
Current site
Google Scholar
PubMed
Close
,
Jennifer A. MacKinnon aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Jennifer A. MacKinnon in
Current site
Google Scholar
PubMed
Close
,
Gunnar Voet aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Gunnar Voet in
Current site
Google Scholar
PubMed
Close
,
Jody M. Klymak bSchool of Earth and Ocean Sciences, and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Jody M. Klymak in
Current site
Google Scholar
PubMed
Close
, and
Jonathan D. Nash cCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Jonathan D. Nash in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Enhanced diapycnal mixing induced by the near-bottom breaking of internal waves is an essential component of the lower meridional overturning circulation. Despite its crucial role in the ocean circulation, tidally driven internal wave breaking is challenging to observe due to its inherently short spatial and temporal scales. We present detailed moored and shipboard observations that resolve the spatiotemporal variability of the tidal response over a small-scale bump embedded in the continental slope of Tasmania. Cross-shore tidal currents drive a nonlinear trapped response over the steep bottom around the bump. The observations are roughly consistent with two-dimensional high-mode tidal lee-wave theory. However, the alongshore tidal velocities are large, suggesting that the alongshore bathymetric variability modulates the tidal response driven by the cross-shore tidal flow. The semidiurnal tide and energy dissipation rate are correlated at subtidal time scales, but with complex temporal variability. Energy dissipation from a simple scattering model shows that the elevated near-bottom turbulence can be sustained by the impinging mode-1 internal tide, where the dissipation over the bump is O(1%) of the incident depth-integrated energy flux. Despite this small fraction, tidal dissipation is enhanced over the bump due to steep topography at a horizontal scale of O(1) km and may locally drive significant diapycnal mixing.

Significance Statement

Near-bottom turbulent mixing is a key element of the global abyssal circulation. We present observations of the spatiotemporal variability of tidally driven turbulent processes over a small-scale topographic bump off Tasmania. The semidiurnal tide generates large-amplitude transient lee waves and hydraulic jumps that are unstable and dissipate the tidal energy. These processes are consistent with the scattering of the incident low-mode internal tide on the continental slope of Tasmania. Despite elevated turbulence over the bump, near-bottom energy dissipation is small relative to the incident wave energy flux.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Ocean Turbulence Special Collection.

Corresponding author: Olavo B. Marques, omarques@ucsd.edu

Abstract

Enhanced diapycnal mixing induced by the near-bottom breaking of internal waves is an essential component of the lower meridional overturning circulation. Despite its crucial role in the ocean circulation, tidally driven internal wave breaking is challenging to observe due to its inherently short spatial and temporal scales. We present detailed moored and shipboard observations that resolve the spatiotemporal variability of the tidal response over a small-scale bump embedded in the continental slope of Tasmania. Cross-shore tidal currents drive a nonlinear trapped response over the steep bottom around the bump. The observations are roughly consistent with two-dimensional high-mode tidal lee-wave theory. However, the alongshore tidal velocities are large, suggesting that the alongshore bathymetric variability modulates the tidal response driven by the cross-shore tidal flow. The semidiurnal tide and energy dissipation rate are correlated at subtidal time scales, but with complex temporal variability. Energy dissipation from a simple scattering model shows that the elevated near-bottom turbulence can be sustained by the impinging mode-1 internal tide, where the dissipation over the bump is O(1%) of the incident depth-integrated energy flux. Despite this small fraction, tidal dissipation is enhanced over the bump due to steep topography at a horizontal scale of O(1) km and may locally drive significant diapycnal mixing.

Significance Statement

Near-bottom turbulent mixing is a key element of the global abyssal circulation. We present observations of the spatiotemporal variability of tidally driven turbulent processes over a small-scale topographic bump off Tasmania. The semidiurnal tide generates large-amplitude transient lee waves and hydraulic jumps that are unstable and dissipate the tidal energy. These processes are consistent with the scattering of the incident low-mode internal tide on the continental slope of Tasmania. Despite elevated turbulence over the bump, near-bottom energy dissipation is small relative to the incident wave energy flux.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Ocean Turbulence Special Collection.

Corresponding author: Olavo B. Marques, omarques@ucsd.edu
Save
  • Alford, M. H., J. M. Klymak, and G. S. Carter, 2014: Breaking internal lee waves at Kaena Ridge, Hawaii. Geophys. Res. Lett., 41, 906912, https://doi.org/10.1002/2013GL059070.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., H. L. Simmons, O. B. Marques, and J. B. Girton, 2019: Internal tide attenuation in the North Pacific. Geophys. Res. Lett., 46, 82058213, https://doi.org/10.1029/2019GL082648.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. D. Nash, and M. Buijsman, 2023: Tidally forced turbulent dissipation on a three-dimensional fan in Luzon Strait. J. Phys. Oceanogr., 53, 177193, https://doi.org/10.1175/JPO-D-22-0117.1.

    • Search Google Scholar
    • Export Citation
  • Aucan, J., M. A. Merrifield, D. S. Luther, and P. Flament, 2006: Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 12021219, https://doi.org/10.1175/JPO2888.1.

    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Bluteau, C., N. Jones, and G. Ivey, 2013: Turbulent mixing efficiency at an energetic ocean site. J. Geophys. Res. Oceans, 118, 46624672, https://doi.org/10.1002/jgrc.20292.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp..

  • Cimatoribus, A. A., H. Van Haren, and L. Gostiaux, 2014: Comparison of Ellison and Thorpe scales from Eulerian ocean temperature observations. J. Geophys. Res. Oceans, 119, 70477065, https://doi.org/10.1002/2014JC010132.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., and M. E. Inall, 2015: Tidal mixing processes amid small-scale, deep-ocean topography. Geophys. Res. Lett., 42, 484491, https://doi.org/10.1002/2014GL062755.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. G. Nurser, and A. C. Naveira Garabato, 2016: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., S. Falahat, G. Madec, F. Roquet, J. Nycander, and C. Vic, 2019: Toward global maps of internal tide energy sinks. Ocean Modell., 137, 5275, https://doi.org/10.1016/j.ocemod.2019.03.010.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and Coauthors, 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, https://doi.org/10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 20932106, https://doi.org/10.1175/JPO-D-13-0224.1.

    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, and M. Zarroug, 2014: Global calculation of tidal energy conversion into vertical normal modes. J. Phys. Oceanogr., 44, 32253244, https://doi.org/10.1175/JPO-D-14-0002.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Johnston, T. M. S., D. L. Rudnick, and S. M. Kelly, 2015: Standing internal tides in the Tasman Sea observed by gliders. J. Phys. Oceanogr., 45, 27152737, https://doi.org/10.1175/JPO-D-15-0038.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, K. I. Martini, M. H. Alford, and E. Kunze, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232, https://doi.org/10.1175/JPO-D-11-0231.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, https://doi.org/10.1175/2007JPO3728.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010a: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 20592074, https://doi.org/10.1175/2010JPO4396.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. M. Legg, and R. Pinkel, 2010b: High-mode stationary waves in stratified flow over large obstacles. J. Fluid Mech., 644, 321336, https://doi.org/10.1017/S0022112009992503.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, https://doi.org/10.1175/2010JPO4500.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. Buijsman, S. Legg, and R. Pinkel, 2013: Parameterizing surface and internal tide scattering and breaking on supercritical topography: The one- and two-ridge cases. J. Phys. Oceanogr., 43, 13801397, https://doi.org/10.1175/JPO-D-12-061.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., H. L. Simmons, D. Braznikov, S. Kelly, J. A. MacKinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016: Reflection of linear internal tides from realistic topography: The Tasman continental slope. J. Phys. Oceanogr., 46, 33213337, https://doi.org/10.1175/JPO-D-16-0061.1.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, https://doi.org/10.1029/JC080i015p01975.

    • Search Google Scholar
    • Export Citation
  • Lefauve, A., C. Muller, and A. Melet, 2015: A three-dimensional map of tidal dissipation over abyssal hills. J. Geophys. Res. Oceans, 120, 47604777, https://doi.org/10.1002/2014JC010598.

    • Search Google Scholar
    • Export Citation
  • Legg, S., 2021: Mixing by oceanic lee waves. Annu. Rev. Fluid Mech., 53, 173201, https://doi.org/10.1146/annurev-fluid-051220-043904.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964, https://doi.org/10.1175/2008JPO3777.1.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., and T. J. Boyd, 2006: Tidally forced internal waves and overturns observed on a slope: Results from home. J. Phys. Oceanogr., 36, 11841201, https://doi.org/10.1175/JPO2887.1.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and M. Gregg, 2001: Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 45754591, https://doi.org/10.1029/2000JC000351.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Search Google Scholar
    • Export Citation
  • Marques, O. B., and Coauthors, 2021: Internal tide structure and temporal variability on the reflective continental slope of southeastern Tasmania. J. Phys. Oceanogr., 51, 611631, https://doi.org/10.1175/JPO-D-20-0044.1.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794, https://doi.org/10.1175/2011JPO4581.1.

    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. K. Venayagamoorthy, L. St. Laurent, and J. N. Moum, 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. J. Phys. Oceanogr., 45, 24972521, https://doi.org/10.1175/JPO-D-14-0128.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, https://doi.org/10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., S. Legg, and R. Hallberg, 2016: Climatic impacts of parameterized local and remote tidal mixing. J. Climate, 29, 34733500, https://doi.org/10.1175/JCLI-D-15-0153.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Musgrave, R., J. MacKinnon, R. Pinkel, A. Waterhouse, and J. Nash, 2016: Tidally driven processes leading to near-field turbulence in a channel at the crest of the Mendocino escarpment. J. Phys. Oceanogr., 46, 11371155, https://doi.org/10.1175/JPO-D-15-0021.1.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, https://doi.org/10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. Alford, E. Kunze, K. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, https://doi.org/10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. L. Shroyer, S. M. Kelly, M. E. Inall, T. F. Duda, M. D. Levine, N. L. Jones, and R. C. Musgrave, 2012: Are any coastal internal tides predictable? Oceanography, 25 (2), 8095, https://doi.org/10.5670/oceanog.2012.44.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, https://doi.org/10.1029/2004JC002487.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., and Coauthors, 2019: Revisiting the circulation of the East Australian Current: Its path, separation, and eddy field. Prog. Oceanogr., 176, 102139, https://doi.org/10.1016/j.pocean.2019.102139.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 17591779, https://doi.org/10.1175/JPO-D-12-0207.1.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., M. Buijsman, and J. M. Klymak, 2012: Breaking topographic lee waves in a tidal channel in Luzon Strait. Oceanography, 25 (2), 160165, https://doi.org/10.5670/oceanog.2012.51.

    • Search Google Scholar
    • Export Citation
  • Pinkel, R., M. Alford, A. Lucas, S. Johnston, J. MacKinnon, A. Waterhouse, and P. Strutton, 2015: Breaking internal tides keep the ocean in balance. Eos, 96, https://doi.org/10.1029/2015EO039555.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231246, https://doi.org/10.1175/1520-0485(2004)034<0231:ISFTEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2009: An abyssal recipe. Ocean Modell., 30, 298309, https://doi.org/10.1016/j.ocemod.2009.07.006.

  • Puthan, P., G. Pawlak, and S. Sarkar, 2022: Wake vortices and dissipation in a tidally modulated flow past a three-dimensional topography. J. Geophys. Res. Oceans, 127, e2022JC018470, https://doi.org/10.1029/2022JC018470.

    • Search Google Scholar
    • Export Citation
  • Qu, L., and Coauthors, 2021: Temporal variability in bottom water structures of the continental slope in the northern South China Sea. J. Geophys. Res. Oceans, 126, e2021JC017177, https://doi.org/10.1029/2021JC017177.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Baroclinic energy flux at the Hawaiian Ridge: Observations from the R/P FLIP. J. Phys. Oceanogr., 36, 11041122, https://doi.org/10.1175/JPO2882.1.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, https://doi.org/10.1126/science.1085837.

    • Search Google Scholar
    • Export Citation
  • Sarkar, S., and A. Scotti, 2017: From topographic internal gravity waves to turbulence. Annu. Rev. Fluid Mech., 49, 195220, https://doi.org/10.1146/annurev-fluid-010816-060013.

    • Search Google Scholar
    • Export Citation
  • Savage, A. C., A. F. Waterhouse, and S. M. Kelly, 2020: Internal tide nonstationarity and wave–mesoscale interactions in the Tasman Sea. J. Phys. Oceanogr., 50, 29312951, https://doi.org/10.1175/JPO-D-19-0283.1.

    • Search Google Scholar
    • Export Citation
  • Schlosser, T. L., N. L. Jones, R. C. Musgrave, C. E. Bluteau, G. N. Ivey, and A. J. Lucas, 2019: Observations of diurnal coastal-trapped waves with a thermocline-intensified velocity field. J. Phys. Oceanogr., 49, 19731994, https://doi.org/10.1175/JPO-D-18-0194.1.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., 2020: Interdependence of internal tide and lee wave generation at abyssal hills: Global calculations. J. Phys. Oceanogr., 50, 655677, https://doi.org/10.1175/JPO-D-19-0179.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W., and D. Sandwell, 1994: Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. J. Geophys. Res., 99, 21 80321 824, https://doi.org/10.1029/94JB00988.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 34763495, https://doi.org/10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., S. Stringer, C. Garrett, and D. Perrault-Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res. I, 50, 9871003, https://doi.org/10.1016/S0967-0637(03)00096-7.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc., A286, 125181, https://doi.org/10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2017: Exploring the vertical extent of breaking internal wave turbulence above deep-sea topography. Dyn. Atmos. Oceans, 77, 8999, https://doi.org/10.1016/j.dynatmoce.2017.01.002.

    • Search Google Scholar
    • Export Citation
  • Vic, C., and Coauthors, 2019: Deep-ocean mixing driven by small-scale internal tides. Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5.

    • Search Google Scholar
    • Export Citation
  • Voet, G., M. H. Alford, J. A. MacKinnon, and J. D. Nash, 2020: Topographic form drag on tides and low-frequency flow: Observations of nonlinear lee waves over a tall submarine ridge near Palau. J. Phys. Oceanogr., 50, 14891507, https://doi.org/10.1175/JPO-D-19-0257.1.

    • Search Google Scholar
    • Export Citation
  • Whiteway, T., 2009: Australian bathymetry and topography grid, June 2009, scale 1:5000000. Record 2009/021, Geoscience Australia, https://doi.org/10.4225/25/53D99B6581B9A.

  • Winters, K. B., and L. Armi, 2013: The response of a continuously stratified fluid to an oscillating flow past an obstacle. J. Fluid Mech., 727, 83118, https://doi.org/10.1017/jfm.2013.247.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, H. L. Simmons, D. Brazhnikov, and R. Pinkel, 2018: Satellite investigation of the M2 internal tide in the Tasman Sea. J. Phys. Oceanogr., 48, 687703, https://doi.org/10.1175/JPO-D-17-0047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1803 1574 787
Full Text Views 323 171 8
PDF Downloads 321 165 9