Generation and Evolution of Internal Solitary Waves in a Coastal Plain Estuary

Renjian Li aHorn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland

Search for other papers by Renjian Li in
Current site
Google Scholar
PubMed
Close
and
Ming Li aHorn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland

Search for other papers by Ming Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-amplitude internal solitary waves were recently observed in a coastal plain estuary and were hypothesized to evolve from an internal lee wave generated at the channel–shoal interface. To test this mechanism, a 3D nonhydrostatic model with nested domains and adaptive grids was used to investigate the generation of the internal solitary waves and their subsequent nonlinear evolution. A complex sequence of wave propagation and transformation was documented and interpreted using the nonlinear wave theory based on the Korteweg–de Vries equation. During the ebb tide a mode-2 internal lee wave is generated by the interaction between lateral flows and channel–shoal topography. This mode-2 lee wave subsequently propagates onto the shallow shoal and transforms into a mode-1 wave of elevation as strong mixing on the flood tide erases stratification in the bottom boundary layer and the lower branch of the mode-2 wave. The mode-1 wave of elevation evolves into an internal solitary wave due to nonlinear steepening and spatial changes in the wave phase speed. As the solitary wave of elevation continues to propagate over the shoaling bottom, the leading edge moves ahead as a rarefaction wave while the trailing edge steepens and disintegrates into a train of rank-ordered internal solitary waves, due to the combined effects of shoaling and dispersion. Strong turbulence in the bottom boundary layer dissipates wave energy and causes the eventual destruction of the solitary waves. In the meantime, the internal solitary waves can generate elevated shear and dissipation rate in local regions.

Significance Statement

In the coastal ocean nonlinear internal solitary waves are widely recognized to play an important role in generating turbulent mixing, modulating short-term variability of nearshore ecosystem, and transporting sediment and biochemical materials. However, their effects on shallow and stratified estuaries are poorly known and have been rarely studied. The nonhydrostatic model simulations presented in this paper shed new light into the generation, propagation, and transformation of the internal solitary waves in a coastal plain estuary.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renjian Li, rli@umces.edu

Abstract

Large-amplitude internal solitary waves were recently observed in a coastal plain estuary and were hypothesized to evolve from an internal lee wave generated at the channel–shoal interface. To test this mechanism, a 3D nonhydrostatic model with nested domains and adaptive grids was used to investigate the generation of the internal solitary waves and their subsequent nonlinear evolution. A complex sequence of wave propagation and transformation was documented and interpreted using the nonlinear wave theory based on the Korteweg–de Vries equation. During the ebb tide a mode-2 internal lee wave is generated by the interaction between lateral flows and channel–shoal topography. This mode-2 lee wave subsequently propagates onto the shallow shoal and transforms into a mode-1 wave of elevation as strong mixing on the flood tide erases stratification in the bottom boundary layer and the lower branch of the mode-2 wave. The mode-1 wave of elevation evolves into an internal solitary wave due to nonlinear steepening and spatial changes in the wave phase speed. As the solitary wave of elevation continues to propagate over the shoaling bottom, the leading edge moves ahead as a rarefaction wave while the trailing edge steepens and disintegrates into a train of rank-ordered internal solitary waves, due to the combined effects of shoaling and dispersion. Strong turbulence in the bottom boundary layer dissipates wave energy and causes the eventual destruction of the solitary waves. In the meantime, the internal solitary waves can generate elevated shear and dissipation rate in local regions.

Significance Statement

In the coastal ocean nonlinear internal solitary waves are widely recognized to play an important role in generating turbulent mixing, modulating short-term variability of nearshore ecosystem, and transporting sediment and biochemical materials. However, their effects on shallow and stratified estuaries are poorly known and have been rarely studied. The nonhydrostatic model simulations presented in this paper shed new light into the generation, propagation, and transformation of the internal solitary waves in a coastal plain estuary.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renjian Li, rli@umces.edu
Save
  • Aghsaee, P., L. Boegman, and K. G. Lamb, 2010: Breaking of shoaling internal solitary waves. J. Fluid Mech., 659, 289317, https://doi.org/10.1017/S002211201000248X.

    • Search Google Scholar
    • Export Citation
  • Auclair, F., L. Bordois, Y. Dossmann, T. Duhaut, A. Paci, C. Ulses, and C. Nguyen, 2018: A non-hydrostatic non-Boussinesq algorithm for free-surface ocean modelling. Ocean Modell., 132, 1229, https://doi.org/10.1016/j.ocemod.2018.07.011.

    • Search Google Scholar
    • Export Citation
  • Bai, X., Z. Liu, Q. Zheng, J. Hu, K. G. Lamb, and S. Cai, 2019: Fission of shoaling internal waves on the northeastern shelf of the South China Sea. J. Geophys. Res. Oceans, 124, 45294545, https://doi.org/10.1029/2018JC014437.

    • Search Google Scholar
    • Export Citation
  • Boegman, L., and M. Stastna, 2019: Sediment resuspension and transport by internal solitary waves. Annu. Rev. Fluid Mech., 51, 129154, https://doi.org/10.1146/annurev-fluid-122316-045049.

    • Search Google Scholar
    • Export Citation
  • Bourgault, D., and D. E. Kelley, 2003: Wave-induced boundary mixing in a partially mixed estuary. J. Mar. Res., 61, 553576, https://doi.org/10.1357/002224003771815954.

    • Search Google Scholar
    • Export Citation
  • Bourgault, D., D. E. Kelley, and P. S. Galbraith, 2005: Interfacial solitary wave run-up in the St. Lawrence estuary. J. Mar. Res., 63, 10011015, https://doi.org/10.1357/002224005775247599.

    • Search Google Scholar
    • Export Citation
  • Bourgault, D., M. D. Blokhina, R. Mirshak, and D. E. Kelley, 2007: Evolution of a shoaling internal solitary wavetrain. Geophys. Res. Lett., 34, L03601, https://doi.org/10.1029/2006GL028462.

    • Search Google Scholar
    • Export Citation
  • Bourgault, D., D. E. Kelley, and P. S. Galbraith, 2008: Turbulence and boluses on an internal beach. J. Mar. Res., 66, 563588, https://doi.org/10.1357/002224008787536835.

    • Search Google Scholar
    • Export Citation
  • Bourgault, D., P. S. Galbraith, and C. Chavanne, 2016: Generation of internal solitary waves by frontally forced intrusions in geophysical flows. Nat. Commun., 7, 13606, https://doi.org/10.1038/ncomms13606.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., Y. Nie, J. Xie, J. Xu, Y. He, and S. Cai, 2017: Generation of internal solitary waves over a large sill: From Knight Inlet to Luzon Strait. J. Geophys. Res. Oceans, 122, 15551573, https://doi.org/10.1002/2016JC012206.

    • Search Google Scholar
    • Export Citation
  • Cheng, P., R. E. Wilson, R. J. Chant, D. C. Fugate, and R. D. Flood, 2009: Modeling influence of stratification on lateral circulation in a stratified estuary. J. Phys. Oceanogr., 39, 23242337, https://doi.org/10.1175/2009JPO4157.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, P., A. Valle-Levinson, and H. E. de Swart, 2011: A numerical study of residual circulation induced by asymmetric tidal mixing in tidally dominated estuaries. J. Geophys. Res., 116, C01017, https://doi.org/10.1029/2010JC006137.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., S. Vagle, L. Armi, and D. M. Farmer, 2003: Stratified flow over topography: Upstream influence and generation of nonlinear internal waves. Proc. Roy. Soc. London, 459A, 14671487, https://doi.org/10.1098/rspa.2002.1077.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., L. Armi, and S. Vagle, 2006: Upstream internal hydraulic jumps. J. Phys. Oceanogr., 36, 753769, https://doi.org/10.1175/JPO2894.1.

    • Search Google Scholar
    • Export Citation
  • da Silva, J. C. B., M. C. Buijsman, and J. M. Magalhaes, 2015: Internal waves on the upstream side of a large sill of the Mascarene Ridge: A comprehensive view of their generation mechanisms and evolution. Deep-Sea Res. I, 99, 87104, https://doi.org/10.1016/j.dsr.2015.01.002.

    • Search Google Scholar
    • Export Citation
  • Davis, K. A., R. S. Arthur, E. C. Reid, J. S. Rogers, O. B. Fringer, T. M. DeCarlo, and A. L. Cohen, 2020: Fate of internal waves on a shallow shelf. J. Geophys. Res. Oceans, 125, e2019JC015377, https://doi.org/10.1029/2019JC015377.

    • Search Google Scholar
    • Export Citation
  • Debreu, L., C. Vouland, and E. Blayo, 2008: AGRIF: Adaptive grid refinement in Fortran. Comput. Geosci., 34, 813, https://doi.org/10.1016/j.cageo.2007.01.009.

    • Search Google Scholar
    • Export Citation
  • Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modell., 4950, 121, https://doi.org/10.1016/j.ocemod.2012.03.003.

    • Search Google Scholar
    • Export Citation
  • Dokken, S. T., R. Olsen, T. Wahl, and M. V. Tantillo, 2001: Identification and characterization of internal waves in SAR images along the coast of Norway. Geophys. Res. Lett., 28, 28032806, https://doi.org/10.1029/2000GL012730.

    • Search Google Scholar
    • Export Citation
  • Dyer, K. R., 1982: Mixing caused by lateral internal seiching within a partially mixed estuary. Estuarine Coastal Shelf Sci., 15, 443457, https://doi.org/10.1016/0272-7714(82)90053-1.

    • Search Google Scholar
    • Export Citation
  • Farmer, D., and L. Armi, 1999: The generation and trapping of solitary waves over topography. Science, 283, 188190, https://doi.org/10.1126/science.283.5399.188.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Grimshaw, R., E. Pelinovsky, and T. Talipova, 1997: The modified Korteweg-de Vries equation in the theory of large-amplitude internal waves. Nonlinear Processes Geophys., 4, 237250, https://doi.org/10.5194/npg-4-237-1997.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., E. Pelinovsky, T. Talipova, and A. Kurkin, 2004: Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr., 34, 27742791, https://doi.org/10.1175/JPO2652.1.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., and W. K. Melville, 2006: Long nonlinear internal waves. Annu. Rev. Fluid Mech., 38, 395425, https://doi.org/10.1146/annurev.fluid.38.050304.092129.

    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., and W. R. Geyer, 2004: An idealized study of the structure of long, partially mixed estuaries. J. Phys. Oceanogr., 34, 26772691, https://doi.org/10.1175/JPO2646.1.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., 1986: Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 91, 76977708, https://doi.org/10.1029/JC091iC06p07697.

    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., E. Pelinovsky, T. Talipova, and B. Barnes, 1997: A nonlinear model of internal tide transformation on the Australian North West shelf. J. Phys. Oceanogr., 27, 871896, https://doi.org/10.1175/1520-0485(1997)027<0871:ANMOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., E. Pelinovsky, and T. Talipova, 1999: A generalized Korteweg‐de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res., 104, 18 33318 350, https://doi.org/10.1029/1999JC900144.

    • Search Google Scholar
    • Export Citation
  • Jiang, G.-S., and C.-W. Shu, 1996: Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126, 202228, https://doi.org/10.1006/jcph.1996.0130.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., G. N. Ivey, M. D. Rayson, and S. M. Kelly, 2020: Mixing driven by breaking nonlinear internal waves. Geophys. Res. Lett., 47, e2020GL089591, https://doi.org/10.1029/2020GL089591.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and J. N. Moum, 2003: Internal solitary waves of elevation advancing on a shoaling shelf. Geophys. Res. Lett., 30, 2045, https://doi.org/10.1029/2003GL017706.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, https://doi.org/10.1175/2010JPO4500.1.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2014: Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech., 46, 231254, https://doi.org/10.1146/annurev-fluid-011212-140701.

    • Search Google Scholar
    • Export Citation
  • Lansing, F. S., and T. Maxworthy, 1984: On the generation and evolution of internal gravity waves. J. Fluid Mech., 145, 127149, https://doi.org/10.1017/S0022112084002846.

    • Search Google Scholar
    • Export Citation
  • Legg, S., 2021: Mixing by oceanic lee waves. Annu. Rev. Fluid Mech., 53, 173201, https://doi.org/10.1146/annurev-fluid-051220-043904.

    • Search Google Scholar
    • Export Citation
  • Li, M., P. Cheng, R. Chant, A. Valle-Levinson, and K. Arnott, 2014: Analysis of vortex dynamics of lateral circulation in a straight tidal estuary. J. Phys. Oceanogr., 44, 27792795, https://doi.org/10.1175/JPO-D-13-0212.1.

    • Search Google Scholar
    • Export Citation
  • Li, R., and M. Li, 2022: A regime diagram for internal lee waves in coastal plain estuaries. J. Phys. Oceanogr., 52, 30493064, https://doi.org/10.1175/JPO-D-21-0261.1.

    • Search Google Scholar
    • Export Citation
  • Liu, A. K., Y. S. Chang, M.-K. Hsu, and N. K. Liang, 1998: Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res., 103, 79958008, https://doi.org/10.1029/97JC01918.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., F. Auclair, L. Debreu, J. McWilliams, R. Almar, R. Benshila, and F. Dumas, 2021: Tridimensional nonhydrostatic transient rip currents in a wave-resolving model. Ocean Modell., 163, 101816, https://doi.org/10.1016/j.ocemod.2021.101816.

    • Search Google Scholar
    • Export Citation
  • Martin, W., P. MacCready, and R. Dewey, 2005: Boundary layer forcing of a semidiurnal, cross-channel seiche. J. Phys. Oceanogr., 35, 15181537, https://doi.org/10.1175/JPO2778.1.

    • Search Google Scholar
    • Export Citation
  • Mason, E., J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, https://doi.org/10.1016/j.ocemod.2010.05.007.

    • Search Google Scholar
    • Export Citation
  • Masunaga, E., O. B. Fringer, H. Yamazaki, and K. Amakasu, 2016: Strong turbulent mixing induced by internal bores interacting with internal tide‐driven vertically sheared flow. Geophys. Res. Lett., 43, 20942101, https://doi.org/10.1002/2016GL067812.

    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1979: A note on the internal solitary waves produced by tidal flow over a three‐dimensional ridge. J. Geophys. Res., 84, 338346, https://doi.org/10.1029/JC084iC01p00338.

    • Search Google Scholar
    • Export Citation
  • Mayer, F. T., and O. B. Fringer, 2021: Resolving nonhydrostatic effects in oceanic lee waves. Ocean Modell., 159, 101763, https://doi.org/10.1016/j.ocemod.2021.101763.

    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and Coauthors, 2020: Observations of shoaling nonlinear internal bores across the central California inner shelf. J. Phys. Oceanogr., 50, 111132, https://doi.org/10.1175/JPO-D-19-0125.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. M. Farmer, W. D. Smyth, L. Armi, and S. Vagle, 2003: Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 20932112, https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. M. Farmer, E. L. Shroyer, W. D. Smyth, and L. Armi, 2007: Dissipative losses in nonlinear internal waves propagating across the continental shelf. J. Phys. Oceanogr., 37, 19891995, https://doi.org/10.1175/JPO3091.1.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., and J. N. Moum, 2005: River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature, 437, 400403, https://doi.org/10.1038/nature03936.

    • Search Google Scholar
    • Export Citation
  • New, A. L., K. R. Dyer, and R. E. Lewis, 1986: Predictions of the generation and propagation of internal waves and mixing in a partially stratified estuary. Estuarine Coastal Shelf Sci., 22, 199214, https://doi.org/10.1016/0272-7714(86)90113-7.

    • Search Google Scholar
    • Export Citation
  • Penven, P., L. Debreu, P. Marchesiello, and J. C. McWilliams, 2006: Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system. Ocean Modell., 12, 157187, https://doi.org/10.1016/j.ocemod.2005.05.002.

    • Search Google Scholar
    • Export Citation
  • Richards, C., D. Bourgault, P. S. Galbraith, A. Hay, and D. E. Kelley, 2013: Measurements of shoaling internal waves and turbulence in an estuary. J. Geophys. Res. Oceans, 118, 273286, https://doi.org/10.1029/2012JC008154.

    • Search Google Scholar
    • Export Citation
  • Sarabun, C. C., and D. C. Dubbel, 1990: High-resolution thermistor chain observations in the upper Chesapeake Bay. Johns Hopkins APL Tech. Dig., 11, 4853.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., and J. Pineda, 2004: Observation of very large and steep internal waves of elevation near the Massachusetts coast. Geophys. Res. Lett., 31, L22307, https://doi.org/10.1029/2004GL021052.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., R. C. Beardsley, B. Butman, and J. Pineda, 2008: Shoaling of nonlinear internal waves in Massachusetts Bay. J. Geophys. Res., 113, C08031, https://doi.org/10.1029/2008JC004726.

    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., J. N. Moum, and J. D. Nash, 2009: Observations of polarity reversal in shoaling nonlinear internal waves. J. Phys. Oceanogr., 39, 691701, https://doi.org/10.1175/2008JPO3953.1.

    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., J. N. Moum, and J. D. Nash, 2010: Mode 2 waves on the continental shelf: Ephemeral components of the nonlinear internal wavefield. J. Geophys. Res., 115, C07001, https://doi.org/10.1029/2009JC005605.

    • Search Google Scholar
    • Export Citation
  • Sinnett, G., S. R. Ramp, Y. J. Yang, M.-H. Chang, S. Jan, and K. A. Davis, 2022: Large-amplitude internal wave transformation into shallow water. J. Phys. Oceanogr., 52, 25392554, https://doi.org/10.1175/JPO-D-21-0273.1.

    • Search Google Scholar
    • Export Citation
  • Small, J., 2001a: A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean. Part I: Development of the model and investigations of the shoaling effect. J. Phys. Oceanogr., 31, 31633183, https://doi.org/10.1175/1520-0485(2001)031<3163:ANMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Small, J., 2001b: A nonlinear model of the shoaling and refraction of interfacial solitary waves in the ocean. Part II: Oblique refraction across a continental slope and propagation over a seamount. J. Phys. Oceanogr., 31, 31843199, https://doi.org/10.1175/1520-0485(2001)031<3184:ANMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sweby, P. K., 1984: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal., 21, 9951011, https://doi.org/10.1137/0721062.

    • Search Google Scholar
    • Export Citation
  • Urbancic, G. H., K. G. Lamb, I. Fer, and L. Padman, 2022: The generation of linear and nonlinear internal waves forced by subinertial tides over the Yermak Plateau, Arctic Ocean. J. Phys. Oceanogr., 52, 21832203, https://doi.org/10.1175/JPO-D-21-0264.1.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., and K. Hutter, 2002: Numerical experiments on the breaking of solitary internal waves over a slope–shelf topography. J. Phys. Oceanogr., 32, 17791793, https://doi.org/10.1175/1520-0485(2002)032<1779:NEOTBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., N. Stashchuk, M. R. Palmer, and M. E. Inall, 2013: Generation of baroclinic tides over an isolated underwater bank. J. Geophys. Res. Oceans, 118, 43954408, https://doi.org/10.1002/jgrc.20304.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Search Google Scholar
    • Export Citation
  • Woodson, C. B., 2018: The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci., 10, 421441, https://doi.org/10.1146/annurev-marine-121916-063619.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and M. Li, 2019: Generation of internal lee waves by lateral circulation in a coastal plain estuary. J. Phys. Oceanogr., 49, 16871697, https://doi.org/10.1175/JPO-D-18-0142.1.

    • Search Google Scholar
    • Export Citation
  • Xie, X., M. Li, and W. C. Boicourt, 2017a: Breaking of internal solitary waves generated by an estuarine gravity current. Geophys. Res. Lett., 44, 73667373, https://doi.org/10.1002/2017GL073824.

    • Search Google Scholar
    • Export Citation
  • Xie, X., M. Li, M. Scully, and W. C. Boicourt, 2017b: Generation of internal solitary waves by lateral circulation in a stratified estuary. J. Phys. Oceanogr., 47, 17891797, https://doi.org/10.1175/JPO-D-16-0240.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., M. Li, A. C. Ross, S. B. Lee, and D.-L. Zhang, 2017: Sensitivity analysis of Hurricane Arthur (2014) storm surge forecasts to WRF physics parameterizations and model configurations. Wea. Forecasting, 32, 17451764, https://doi.org/10.1175/WAF-D-16-0218.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 363 363 117
Full Text Views 166 166 43
PDF Downloads 132 132 43