Why Is the Westward Rossby Wave Propagation from the California Coast “Too Fast”?

Allan J. Clarke aDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Allan J. Clarke in
Current site
Google Scholar
PubMed
Close
and
Sean Buchanan aDepartment of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Sean Buchanan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Past work has shown that interannual California coastal sea level variability is mostly of equatorial origin, and decades of satellite sea surface height (SSH) and in situ dynamic height observations indicate that this interannual signal propagates westward from the California coast as nondispersive Rossby waves (RWs). These observations agree with standard linear vertical mode theory except that even when mean flow and bottom topography are considered, the fastest baroclinic vertical mode RW in each case is always much slower (1.6–2.3 cm s−1) than the observed 4.2 cm s−1. This order-1 disagreement is only resolved if the standard bottom boundary condition that the vertical velocity w′ = 0 is replaced by perturbation pressure p′ = 0. Zero p′ is an appropriate bottom boundary condition because south of San Francisco the northeastern Pacific Ocean boundary acts approximately like an impermeable vertical wall to the interannual equatorial wave signal, and therefore equatorial quasigeostrophic p′ is horizontally constant along the boundary. Thus, if equatorial p′ = 0 at the bottom, then this condition also applies off California. The large-scale equatorial ocean boundary signal is due to wind-forced eastward group velocity equatorial Kelvin waves, which at interannual and lower frequencies propagate at such a shallow angle to the horizontal that none of the baroclinic equatorial Kelvin wave signal reaches the ocean floor before striking the eastern Pacific boundary. Off California this signal can thus be approximated by a first baroclinic mode with p′ = 0 at the bottom, and hence the long RW speed there agrees with that observed (both approximately 4.2 cm s−1).

Significance Statement

The California Current System is one of the most biologically rich and best-documented coastal regions in the world. In this region coastal sea level propagates westward from the coast at about 110 km month−1, slow enough to enable us to make large-scale ocean climate forecasts of the California Current ecosystem using coastal sea level. Although the westward speed seems slow, theoretically it is about double what we would expect. Offered here is an explanation of why this speed is “too fast” by linking the California wave signal to the equator, El Niño, and the shallow equatorial ocean response to the wind.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allan J. Clarke, aclarke@fsu.edu

Abstract

Past work has shown that interannual California coastal sea level variability is mostly of equatorial origin, and decades of satellite sea surface height (SSH) and in situ dynamic height observations indicate that this interannual signal propagates westward from the California coast as nondispersive Rossby waves (RWs). These observations agree with standard linear vertical mode theory except that even when mean flow and bottom topography are considered, the fastest baroclinic vertical mode RW in each case is always much slower (1.6–2.3 cm s−1) than the observed 4.2 cm s−1. This order-1 disagreement is only resolved if the standard bottom boundary condition that the vertical velocity w′ = 0 is replaced by perturbation pressure p′ = 0. Zero p′ is an appropriate bottom boundary condition because south of San Francisco the northeastern Pacific Ocean boundary acts approximately like an impermeable vertical wall to the interannual equatorial wave signal, and therefore equatorial quasigeostrophic p′ is horizontally constant along the boundary. Thus, if equatorial p′ = 0 at the bottom, then this condition also applies off California. The large-scale equatorial ocean boundary signal is due to wind-forced eastward group velocity equatorial Kelvin waves, which at interannual and lower frequencies propagate at such a shallow angle to the horizontal that none of the baroclinic equatorial Kelvin wave signal reaches the ocean floor before striking the eastern Pacific boundary. Off California this signal can thus be approximated by a first baroclinic mode with p′ = 0 at the bottom, and hence the long RW speed there agrees with that observed (both approximately 4.2 cm s−1).

Significance Statement

The California Current System is one of the most biologically rich and best-documented coastal regions in the world. In this region coastal sea level propagates westward from the coast at about 110 km month−1, slow enough to enable us to make large-scale ocean climate forecasts of the California Current ecosystem using coastal sea level. Although the westward speed seems slow, theoretically it is about double what we would expect. Offered here is an explanation of why this speed is “too fast” by linking the California wave signal to the equator, El Niño, and the shallow equatorial ocean response to the wind.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Allan J. Clarke, aclarke@fsu.edu
Save
  • Ando, K., and M. J. McPhaden, 1997: Variability of surface later hydrography in the tropical Pacific Ocean. J. Geophys. Res., 102, 23 06323 078, https://doi.org/10.1029/97JC01443.

    • Search Google Scholar
    • Export Citation
  • Bobrovich, A. V., and G. M. Reznik, 1999: Planetary waves in a stratified ocean of variable depth. Part 2. Continuously stratified ocean. J. Fluid Mech., 388, 147169, https://doi.org/10.1017/S0022112099004863.

    • Search Google Scholar
    • Export Citation
  • Bretschneider, D. F., and D. R. McLain, 1976: Anomalies of monthly mean sea level along the west coasts of North and South America. Mar. Fish. Climate, 3, 95102.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and J. Pedlosky, 2018: Rossby waves with continuous stratification and bottom friction. J. Phys. Oceanogr., 48, 22092219, https://doi.org/10.1175/JPO-D-18-0070.1.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and J. Pedlosky, 2020: The structure of baroclinic modes in the presence of baroclinic mean flow. J. Phys. Oceanogr., 50, 239253, https://doi.org/10.1175/JPO-D-19-0123.1.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and E. S. Sarachik, 1977: Forced baroclinic ocean motions. II. The equatorial bounded case. J. Mar. Res., 35, 395432.

  • Cane, M. A., and D. W. Moore, 1981: A note on low-frequency equatorial basin modes. J. Phys. Oceanogr., 11, 15781584, https://doi.org/10.1175/1520-0485(1981)011<1578:ANOLFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Challenor, P. G., P. Cipollini, D. Cromwell, K. L. Hill, G. D. Quartly, and I. S. Robinson, 2004: Characteristics of mid-latitude Rossby wave propagation from multiple satellite datasets. Int. J. Remote Sens., 25, 12971302, https://doi.org/10.1080/01431160310001592201.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 1980: Low frequency sea level variability along the west coast of North America. Ph.D. dissertation, Scripps Institution of Oceanography, University of California, 212 pp.

  • Chelton, D. B., and R. E. Davis, 1982: Monthly mean sea-level variability along the west coast of North America. J. Phys. Oceanogr., 12, 757784, https://doi.org/10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., P. A. Bernal, and J. A. McGowan, 1982: Large-scale interannual physical and biological interaction in the California Current. J. Mar. Res., 40, 10951125.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1983: The reflection of equatorial waves from oceanic boundaries. J. Phys. Oceanogr., 13, 11931207, https://doi.org/10.1175/1520-0485(1983)013<1193:TROEWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1992: Low-frequency reflection from a nonmeridional eastern ocean boundary and the use of coastal sea level to monitor eastern Pacific equatorial Kelvin waves. J. Phys. Oceanogr., 22, 163183, https://doi.org/10.1175/1520-0485(1992)022<0163:LFRFAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Academic Press, 324 pp.

  • Clarke, A. J., and R. O. R. Y. Thompson, 1984: Large-scale wind driven ocean response in the Australian Coastal Experiment region. J. Phys. Oceanogr., 14, 338352, https://doi.org/10.1175/1520-0485(1984)014<0338:LSWDOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 1986: A method for estimating wind-driven frictional, time-dependent, stratified shelf and slope water flow. J. Phys. Oceanogr., 16, 10131028, https://doi.org/10.1175/1520-0485(1986)016<1013:AMFEWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and C. Shi, 1991: Critical frequencies at ocean boundaries. J. Geophys. Res., 96, 10 73110 738, https://doi.org/10.1029/91JC00933.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1993: Observations and dynamics of semiannual and annual sea levels near the eastern equatorial Indian Ocean boundary. J. Phys. Oceanogr., 23, 386399, https://doi.org/10.1175/1520-0485(1993)023<0386:OADOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and A. Lebedev, 1999: Remotely driven decadal and longer changes in the coastal Pacific waters of the Americas. J. Phys. Oceanogr., 29, 828835, https://doi.org/10.1175/1520-0485(1999)029<0828:RDDALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and M. Dottori, 2008: Planetary wave propagation off California and its effect on zooplankton. J. Phys. Oceanogr., 38, 702714, https://doi.org/10.1175/2007JPO3691.1.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • de La Lama, M. S., L. H. LaCasce, and H. Fuhr, 2016: The vertical structure of ocean eddies. Dyn. Stat. Climate Syst., 1, dzw001, https://doi.org/10.1093/climsys/dzw001.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3, 12541281, https://doi.org/10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., and G. Reverdin, 2000: Vertically propagating annual and interannual variability in an OGCM simulation of the tropical Pacific Ocean in 1985–94. J. Phys. Oceanogr., 30, 15621581, https://doi.org/10.1175/1520-0485(2000)030<1562:VPAAIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dottori, M., and A. J. Clarke, 2009: Rossby waves and the interannual and interdecadal variability of temperature and salinity off California. J. Phys. Oceanogr., 39, 25432561, https://doi.org/10.1175/2009JPO3898.1.

    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557578, https://doi.org/10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frischknecht, M., M. Münnich, and N. Gruber, 2015: Remote versus local influence of ENSO on the California Current System. J. Geophys. Res. Oceans, 120, 13531374, https://doi.org/10.1002/2014JC010531.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and B. Qiu, 2002: Low-frequency variability of the North Pacific Ocean: The role of boundary- and wind-driven baroclinic Rossby waves. J. Geophys. Res., 107, 3220, https://doi.org/10.1029/2001JC001131.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and A. J. Clarke, 1974: Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Res. Oceanogr. Abtsr., 21, 325345, https://doi.org/10.1016/0011-7471(74)90038-2.

    • Search Google Scholar
    • Export Citation
  • Giunipero, E., and A. J. Clarke, 2013: Estimation of the effect of eddies on coastal El Niño flows using along-track satellite altimeter data. J. Phys. Oceanogr., 43, 12091224, https://doi.org/10.1175/JPO-D-12-0109.1.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., and J. S. Allen, 1988: Low-frequency baroclinic waves off coastal boundaries. J. Phys. Oceanogr., 18, 11241143, https://doi.org/10.1175/1520-0485(1988)018<1124:LFBWOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herrera Cervantes, H., and A. Parés-Sierra, 1994: Propagación de variaciones de baja frecuencia en la temperatura superficial del Pacífico nor-oriental. Geofis. Int., 33, 469486, https://doi.org/10.22201/igeof.00167169p.1994.33.3.1184.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res., 95, 51835217, https://doi.org/10.1029/JC095iC04p05183.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 1999: The effects of bottom topography on the speed of long extratropical planetary waves. J. Phys. Oceanogr., 29, 26892710, https://doi.org/10.1175/1520-0485(1999)029<2689:TEOBTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and J. R. Blundell, 2003: Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. Part I: The local problem. J. Phys. Oceanogr., 33, 784801, https://doi.org/10.1175/1520-0485(2003)33<784:LEPWPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, https://doi.org/10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kutsuwada, K., and M. McPhaden, 2002: Intraseasonal variations in the upper equatorial Pacific Ocean prior to and during the 1997–98 El Niño. J. Phys. Oceanogr., 32, 11331149, https://doi.org/10.1175/1520-0485(2002)032<1133:IVITUE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017GL075430.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and S. Groeskamp, 2020: Baroclinic modes over rough bathymetry and the surface deformation radius. J. Phys. Oceanogr., 50, 28352847, https://doi.org/10.1175/JPO-D-20-0055.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., and A. J. Clarke, 2004: Coastline direction, interannual flow and the strong El Niño currents along Australia’s nearly zonal southern coast. J. Phys. Oceanogr., 34, 23732381, https://doi.org/10.1175/JPO2645.1.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • McCreary, J. P., 1977: Eastern ocean response to changing wind systems. Ph.D. dissertation, Scripps Institution of Oceanography, University of California, 156 pp.

  • McCreary, J. P., 1984: Equatorial beams. J. Mar. Res., 42, 395430, https://doi.org/10.1357/002224084788502792.

  • Ramos, M., B. Dewitte, O. Pizzaro, and G. Garric, 2008: Vertical propagation of extratropical Rossby waves during the 1997–1998 El Niño off the west coast of South America in a medium-resolution OGCM simulation. J. Geophys. Res., 113, C08041, https://doi.org/10.1029/2007JC004681.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., J. L. McClean, C. A. Collins, A. J. Semtner, and K. A. S. Hays, 1997: Observations and modeling of the 1991–1992 El Niño signal off central California. J. Geophys. Res., 102, 55535582, https://doi.org/10.1029/96JC03050.

    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., T. G. Jensen, and M. Flatau, 2019: Characterization of intraseasonal kelvin waves in the equatorial Pacific Ocean. J. Geophys. Res. Oceans, 124, 20282053, https://doi.org/10.1029/2018JC014838.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Surface-intensified Rossby waves over rough topography. J. Mar. Res., 50, 367384, https://doi.org/10.1357/002224092784797593.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., D. L. T. Anderson, and R. Smith, 1981: Beta dispersion of low-frequency Rossby waves. Dyn. Atmos. Oceans, 5, 187214, https://doi.org/10.1016/0377-0265(81)90011-7.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., and C. James, 2002: The 1997–1998 oceanic El Niño signal along the southeast and northeast Pacific boundaries—An altimetric view. Prog. Oceanogr., 54, 439458, https://doi.org/10.1016/S0079-6611(02)00063-0.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., and J. C. McWilliams, 2001: The effect of bottom pressure decoupling on the speed of extratropical, baroclinic Rossby waves. J. Phys. Oceanogr., 31, 14611476, https://doi.org/10.1175/1520-0485(2001)031<1461:TEOBPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326332, https://doi.org/10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vega, A., Y. duPenhoat, B. Dewitte, and O. Pizzaro, 2003: Equatorial forcing of interannual Rossby waves in the eastern South Pacific. Geophys. Res. Lett., 30, 1197, https://doi.org/10.1029/2002GL015886.

    • Search Google Scholar
    • Export Citation
  • Vergara, O., B. Dewitte, M. Ramos, and O. Pizzaro, 2017: Vertical energy flux at ENSO time scales in the subthermoclinie of the southeastern Pacific. J. Geophys. Res. Oceans, 122, 60116038, https://doi.org/10.1002/2016JC012614.

    • Search Google Scholar
    • Export Citation
  • Wortham, C., and C. Wunsch, 2014: A multidimensional spectral description of ocean variability. J. Phys. Oceanogr., 44, 944966, https://doi.org/10.1175/JPO-D-13-0113.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and A. J. Clarke, 2015: Observations of interannual equatorial freshwater jets in the western Pacific. J. Phys. Oceanogr., 45, 28482865, https://doi.org/10.1175/JPO-D-14-0245.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and A. J. Clarke, 2017: On the dynamical relationship between equatorial Pacific surface currents, zonally averaged equatorial sea level, and El Niño predictions. J. Phys. Oceanogr., 47, 323337, https://doi.org/10.1175/JPO-D-16-0193.1.

    • Search Google Scholar
    • Export Citation
  • Zlotnicki, V., Z. Qu, and J. Willis, 2019: MEaSUREs gridded sea surface height anomalies version 1812. PO.DAAC, accessed 22 May 2019, https://doi.org/10.5067/SLREF-CDRV2.

  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 316 316 30
Full Text Views 211 211 16
PDF Downloads 176 176 14