Observations of Parametric Subharmonic Instability of Diurnal Internal Tides in the Northwest Pacific

Yifan Wang aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution/Academy of the Future Ocean, Ocean University of China, Qingdao/Sanya, China

Search for other papers by Yifan Wang in
Current site
Google Scholar
PubMed
Close
,
Shoude Guan aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution/Academy of the Future Ocean, Ocean University of China, Qingdao/Sanya, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Shoude Guan in
Current site
Google Scholar
PubMed
Close
,
Zhiwei Zhang aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution/Academy of the Future Ocean, Ocean University of China, Qingdao/Sanya, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Zhiwei Zhang in
Current site
Google Scholar
PubMed
Close
,
Chun Zhou aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution/Academy of the Future Ocean, Ocean University of China, Qingdao/Sanya, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Chun Zhou in
Current site
Google Scholar
PubMed
Close
,
Xin Xu cSchool of Mathematical Sciences and College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Xin Xu in
Current site
Google Scholar
PubMed
Close
,
Chuncheng Guo dNorwegian Research Centre, Bergen, Norway
eBjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Chuncheng Guo in
Current site
Google Scholar
PubMed
Close
,
Wei Zhao aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution/Academy of the Future Ocean, Ocean University of China, Qingdao/Sanya, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Wei Zhao in
Current site
Google Scholar
PubMed
Close
, and
Jiwei Tian aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory/Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution/Academy of the Future Ocean, Ocean University of China, Qingdao/Sanya, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Jiwei Tian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on yearlong observations from three moorings at 12°, 14°, and 16°N in the northwest Pacific, this study presents observational evidence for the occurrence and behavior of parametric subharmonic instability (PSI) of diurnal internal tides (ITs) both in the upper and abyssal ocean around the critical latitudes (O1 IT: 13.44°N; K1 IT: 14.52°N), which is relatively less explored in comparison with PSI of M2 ITs. At 14°N, near-inertial waves (NIWs) feature a “checkerboard” pattern with comparable upward- and downward-propagating components, while the diurnal ITs mainly feature a low-mode structure. The near-inertial kinetic energy at 14°N, correlated fairly well with the diurnal KE, is the largest among three moorings. The bicoherence analysis, and a causality analysis method newly introduced here, both show statistically significant phase locking between PSI triads at 14°N, while no significant signals emerge at 12° and 16°N. The estimated PSI energy transfer rate shows a net energy transfer from diurnal ITs to NIWs with an annual-mean value of 1.5 × 10−10 W kg−1. The highly sheared NIWs generated by PSI result in a 2–6 times larger probability of shear instability events at 14°N than 12° and 16°N. Through swinging the local effective inertial frequency close to either O1 or K1 subharmonic frequencies, the passages of anticyclonic and cyclonic eddies both result in elevated NIWs and shear instability events by enhancing PSI efficiency. Particularly, different from the general understanding that cyclonic eddies usually expel NIWs, enhanced NIWs and instability are observed within cyclonic eddies whose relative vorticity can modify PSI efficiency.

Significance Statement

Parametric subharmonic instability (PSI) effectively transfers energy from low-mode internal tides (ITs) to high-mode near-inertial waves (NIWs), triggering elevated mixing around critical latitudes. This study provides observational evidence for the occurrence of PSI of diurnal ITs in the northwest Pacific and its role in enhancing shear instability. Generally, anticyclonic eddies act to trap NIWs while cyclonic eddies tend to expel NIWs. Here we document elevated NIWs and shear instability within both anticyclonic and cyclonic eddies, which shift the local effective inertial frequency close to either O1 or K1 subharmonic frequencies, thereby enhancing PSI efficiency. Processes associated with PSI and the modulation of PSI efficiency by mesoscale eddies have significant implications for improving mixing parameterizations in ocean circulation and climate models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shoude Guan, guanshoude@ouc.edu.cn

Abstract

Based on yearlong observations from three moorings at 12°, 14°, and 16°N in the northwest Pacific, this study presents observational evidence for the occurrence and behavior of parametric subharmonic instability (PSI) of diurnal internal tides (ITs) both in the upper and abyssal ocean around the critical latitudes (O1 IT: 13.44°N; K1 IT: 14.52°N), which is relatively less explored in comparison with PSI of M2 ITs. At 14°N, near-inertial waves (NIWs) feature a “checkerboard” pattern with comparable upward- and downward-propagating components, while the diurnal ITs mainly feature a low-mode structure. The near-inertial kinetic energy at 14°N, correlated fairly well with the diurnal KE, is the largest among three moorings. The bicoherence analysis, and a causality analysis method newly introduced here, both show statistically significant phase locking between PSI triads at 14°N, while no significant signals emerge at 12° and 16°N. The estimated PSI energy transfer rate shows a net energy transfer from diurnal ITs to NIWs with an annual-mean value of 1.5 × 10−10 W kg−1. The highly sheared NIWs generated by PSI result in a 2–6 times larger probability of shear instability events at 14°N than 12° and 16°N. Through swinging the local effective inertial frequency close to either O1 or K1 subharmonic frequencies, the passages of anticyclonic and cyclonic eddies both result in elevated NIWs and shear instability events by enhancing PSI efficiency. Particularly, different from the general understanding that cyclonic eddies usually expel NIWs, enhanced NIWs and instability are observed within cyclonic eddies whose relative vorticity can modify PSI efficiency.

Significance Statement

Parametric subharmonic instability (PSI) effectively transfers energy from low-mode internal tides (ITs) to high-mode near-inertial waves (NIWs), triggering elevated mixing around critical latitudes. This study provides observational evidence for the occurrence of PSI of diurnal ITs in the northwest Pacific and its role in enhancing shear instability. Generally, anticyclonic eddies act to trap NIWs while cyclonic eddies tend to expel NIWs. Here we document elevated NIWs and shear instability within both anticyclonic and cyclonic eddies, which shift the local effective inertial frequency close to either O1 or K1 subharmonic frequencies, thereby enhancing PSI efficiency. Processes associated with PSI and the modulation of PSI efficiency by mesoscale eddies have significant implications for improving mixing parameterizations in ocean circulation and climate models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shoude Guan, guanshoude@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.9745 MB)
Save
  • Alford, M. H., 2001a: Fine-structure contamination: Observations and a model of a simple two-wave case. J. Phys. Oceanogr., 31, 26452649, https://doi.org/10.1175/1520-0485(2001)031<2645:FSCOAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2001b: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2008: Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophys. Res. Lett., 35, L15602, https://doi.org/10.1029/2008GL034720.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, https://doi.org/10.1029/2007GL031566.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., and Coauthors, 2018: Geographical distribution of diurnal and semidiurnal parametric subharmonic instability in a global ocean circulation model. J. Phys. Oceanogr., 48, 14091431, https://doi.org/10.1175/JPO-D-17-0164.1.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. C. Gregg, 2006: Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr., 36, 11361147, https://doi.org/10.1175/JPO2884.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., and Coauthors, 2022: Mutual enhancement of wind- and tide-induced near-inertial internal waves in Luzon Strait. J. Phys. Oceanogr., 52, 32593272, https://doi.org/10.1175/JPO-D-22-0055.1.

    • Search Google Scholar
    • Export Citation
  • Chinn, B. S., J. B. Girton, and M. H. Alford, 2012: Observations of internal waves and parametric subharmonic instability in the Philippines archipelago. J. Geophys. Res., 117, C05019, https://doi.org/10.1029/2011JC007392.

    • Search Google Scholar
    • Export Citation
  • Dong, J., and Coauthors, 2019: Impacts of mesoscale currents on the diurnal critical latitude dependence of internal tides: A numerical experiment based on Barcoo seamount. J. Geophys. Res. Oceans, 124, 24522471, https://doi.org/10.1029/2018JC014413.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, https://doi.org/10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Elgar, S., and R. T. Guza, 1988: Statics of bicoherence. IEEE Trans. Acoust. Speech Signal Process., 36, 16671668, https://doi.org/10.1109/29.7555.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Frajka-Williams, E., E. Kunze, and J. A. MacKinnon, 2006: Bispectra of internal tides and parametric subharmonic instability. M.S. thesis, School of Oceanography, University of Washington, 26 pp.

  • Furuichi, N., T. Hibiya, and Y. Niwa, 2005: Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field. J. Phys. Oceanogr., 35, 21042109, https://doi.org/10.1175/JPO2816.1.

    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., 1969: Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424438, https://doi.org/10.2307/1912791.

    • Search Google Scholar
    • Export Citation
  • Guan, S., W. Zhao, J. Huthnance, J. Tian, and J. Wang, 2014: Observed upper ocean response to Typhoon Megi (2010) in the northern South China Sea. J. Geophys. Res. Oceans, 119, 31343157, https://doi.org/10.1002/2013JC009661.

    • Search Google Scholar
    • Export Citation
  • Hazewinkel, J., and K. B. Winters, 2011: PSI of the internal tide on a β plane: Flux divergence and near-inertial wave propagation. J. Phys. Oceanogr., 41, 16731682, https://doi.org/10.1175/2011JPO4605.1.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., and M. Nagasawa, 2004: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31, L01301, https://doi.org/10.1029/2003GL017998.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., Y. Niwa, and K. Fujiwara, 1998: Numerical experiments of nonlinear energy transfer within the oceanic internal wave spectrum. J. Geophys. Res., 103, 18 71518 722, https://doi.org/10.1029/98JC01362.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., M. Nagasawa, and Y. Niwa, 2002: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207, https://doi.org/10.1029/2001JC001210.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., M. Nagasawa, and Y. Niwa, 2007: Latitudinal dependence of diapycnal diffusivity in the thermocline observed using a microstructure profiler. Geophys. Res. Lett., 34, L24602, https://doi.org/10.1029/2007GL032323.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and Coauthors, 2023: Parametric subharmonic instability of diurnal internal tides in the abyssal South China Sea. J. Phys. Oceanogr., 53, 195213, https://doi.org/10.1175/JPO-D-22-0020.1.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res., 114, C01010, https://doi.org/10.1029/2008JC005030.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., J. M. Toole, P. Klein, and L. N. Thomas, 2013: A near-inertial mode observed within a Gulf Stream warm-core ring. J. Geophys. Res. Oceans, 118, 17971806, https://doi.org/10.1002/jgrc.20141.

    • Search Google Scholar
    • Export Citation
  • Kim, Y. C., and E. J. Powers, 1979: Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans. Plasma Sci., 7, 120131, https://doi.org/10.1109/TPS.1979.4317207.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., 1976: Observations on the vertical polarization and energy flux of near-inertial waves. J. Phys. Oceanogr., 6, 894908, https://doi.org/10.1175/1520-0485(1976)006<0894:OOTVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, https://doi.org/10.1029/JC080i015p01975.

    • Search Google Scholar
    • Export Citation
  • Le Boyer, A., and M. H. Alford, 2021: Variability and sources of the internal wave continuum examined from global moored velocity records. J. Phys. Oceanogr., 51, 28072823, https://doi.org/10.1175/JPO-D-20-0155.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2016: Information flow and causality as rigorous notions ab initio. Phys. Rev., 94, 052201, https://doi.org/10.1103/PhysRevE.94.052201.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2018: Causation and information flow with respect to relative entropy. Chaos, 28, 075311, https://doi.org/10.1063/1.5010253.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2021: Normalized multivariate time series causality analysis and causal graph reconstruction. Entropy, 23, 679, https://doi.org/10.3390/e23060679.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and R. Kleeman, 2005: Information transfer between dynamical system components. Phys. Rev. Lett., 95, 244101, https://doi.org/10.1103/PhysRevLett.95.244101.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., F. Xu, Y. Rong, R. Zhang, X. Tang, and F. Zhang, 2021: El Niño Modoki can be mostly predicted more than 10 years ahead of time. Sci. Rep., 11, 17860, https://doi.org/10.1038/s41598-021-97111-y.

    • Search Google Scholar
    • Export Citation
  • Liu, K., and Z. Zhao, 2020: Disintegration of the K1 internal tide in the South China Sea due to parametric subharmonic instability. J. Phys. Oceanogr., 50, 36053622, https://doi.org/10.1175/JPO-D-19-0320.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Q. Lian, F. Zhang, L. Wang, M. Li, X. Bai, J. Wang, and F. Wang, 2017: Weak thermocline mixing in the North Pacific low-latitude western boundary current system. Geophys. Res. Lett., 44, 10 53010 539, https://doi.org/10.1002/2017GL075210.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, https://doi.org/10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak, 2013: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728, https://doi.org/10.1175/JPO-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Marschinski, R., and H. Kantz, 2002: Analysing the information flow between financial time series. Eur. Phys. J., 30, 275281, https://doi.org/10.1140/epjb/e2002-00379-2.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82, 13971412, https://doi.org/10.1029/JC082i009p01397.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and M. G. Briscoe, 1980: Bispectra of internal waves. J. Fluid Mech., 97, 205213, https://doi.org/10.1017/S0022112080002510.

    • Search Google Scholar
    • Export Citation
  • Müller, M., 2013: On the space- and time-dependence of barotropic-to-baroclinic tidal energy conversion. Ocean Modell., 72, 242252, https://doi.org/10.1016/j.ocemod.2013.09.007.

    • Search Google Scholar
    • Export Citation
  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536, https://doi.org/10.1029/RG024i003p00493.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395, https://doi.org/10.1175/2010JPO4522.1.

    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., and N. Pomphrey, 1981: Disqualifying two candidates for the energy balance of oceanic internal waves. J. Phys. Oceanogr., 11, 14231425, https://doi.org/10.1175/1520-0485(1981)011<1423:DTCFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Onuki, Y., and T. Hibiya, 2015: Excitation mechanism of near-inertial waves in baroclinic tidal flow caused by parametric subharmonic instability. Ocean Dyn., 65, 107113, https://doi.org/10.1007/s10236-014-0789-3.

    • Search Google Scholar
    • Export Citation
  • Pereda, E., R. Q. Quiroga, and J. Bhattacharya, 2005: Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol., 77 (1–2), 137, https://doi.org/10.1016/j.pneurobio.2005.10.003.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 24712486, https://doi.org/10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Baroclinic energy flux at the Hawaiian ridge: Observations from the R/P FLIP. J. Phys. Oceanogr., 36, 11041122, https://doi.org/10.1175/JPO2882.1.

    • Search Google Scholar
    • Export Citation
  • Rosenbaum, P. R., and D. B. Rubin, 1983: The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 4155, https://doi.org/10.1093/biomet/70.1.41.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., 2008: Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Modell., 21, 126138, https://doi.org/10.1016/j.ocemod.2008.01.002.

    • Search Google Scholar
    • Export Citation
  • Steinberg, J. M., S. T. Cole, K. Drushka, and R. P. Abernathey, 2022: Seasonality of the mesoscale inverse cascade as inferred from global scale-dependent eddy energy observations. J. Phys. Oceanogr., 52, 16771691, https://doi.org/10.1175/JPO-D-21-0269.1.

    • Search Google Scholar
    • Export Citation
  • Stips, A., D. Macias, C. Coughlan, E. Garcia-Gorriz, and X. S. Liang, 2016: On the causal structure between CO2 and global temperature. Sci. Rep., 6, 21691, https://doi.org/10.1038/srep21691.

    • Search Google Scholar
    • Export Citation
  • Sun, O. M., and R. Pinkel, 2013: Subharmonic energy transfer from the semidiurnal internal tide to near-diurnal motions over Kaena Ridge, Hawaii. J. Phys. Oceanogr., 43, 766789, https://doi.org/10.1175/JPO-D-12-0141.1.

    • Search Google Scholar
    • Export Citation
  • Tian, J., L. Zhou, and X. Zhang, 2006: Latitudinal distribution of mixing rate caused by the M2 internal tide. J. Phys. Oceanogr., 36, 3542, https://doi.org/10.1175/JPO2824.1.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., Q. Dalaiden, and H. Goosse, 2019: Testing for dynamical dependence: Application to the surface mass balance over Antarctica. Geophys. Res. Lett., 46, 12 12512 135, https://doi.org/10.1029/2019GL084329.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. Cao, X. Chen, Q. Li, and J. Song, 2021: On the resonant triad interaction over mid-ocean ridges. Ocean Modell., 158, 101734, https://doi.org/10.1016/j.ocemod.2020.101734.

    • Search Google Scholar
    • Export Citation
  • Wang, W., B. T. Anderson, R. K. Kaufmann, and R. B. Myneni, 2004: The relation between the North Atlantic Oscillation and SSTs in the North Atlantic basin. J. Climate, 17, 47524759, https://doi.org/10.1175/JCLI-3186.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Z. Xu, T. Hibiya, B. Yin, and F. Wang, 2021: Radiation path of diurnal internal tides in the northwestern Pacific controlled by refraction and interference. J. Geophys. Res. Oceans, 126, e2020JC016972, https://doi.org/10.1029/2020JC016972.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Search Google Scholar
    • Export Citation
  • Xie, X.-H., X.-D. Shang, G.-Y. Chen, and L. Sun, 2009: Variations of diurnal and inertial spectral peaks near the bi-diurnal critical latitude. Geophys. Res. Lett., 36, L02606, https://doi.org/10.1029/2008GL036383.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., Y. Wang, Z. Liu, J. C. McWilliams, and J. Gan, 2021: Insight into the dynamics of the radiating internal tide associated with the Kuroshio Current. J. Geophys. Res. Oceans, 126, e2020JC017018, https://doi.org/10.1029/2020JC017018.

    • Search Google Scholar
    • Export Citation
  • Yang, W., T. Hibiya, Y. Tanaka, L. Zhao, and H. Wei, 2018: Modification of parametric subharmonic instability in the presence of background geostrophic currents. Geophys. Res. Lett., 45, 12 95712 962, https://doi.org/10.1029/2018GL080183.

    • Search Google Scholar
    • Export Citation
  • Yang, W., H. Wei, and L. Zhao, 2020: Parametric subharmonic instability of the semidiurnal internal tides at the East China Sea shelf slope. J. Phys. Oceanogr., 50, 907920, https://doi.org/10.1175/JPO-D-19-0163.1.

    • Search Google Scholar
    • Export Citation
  • Young, W., Y.-K. Tsang, and N. J. Balmforth, 2008: Near-inertial parametric subharmonic instability. J. Fluid Mech., 607, 2549, https://doi.org/10.1017/S0022112008001742.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, J. Tian, and X. Liang, 2013: A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J. Geophys. Res. Oceans, 118, 64796494, https://doi.org/10.1002/2013JC008994.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Tian, B. Qiu, W. Zhao, P. Chang, D. Wu, and X. Wan, 2016: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep., 6, 24349, https://doi.org/10.1038/srep24349.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., B. Qiu, J. Tian, W. Zhao, and X. Huang, 2018: Latitude-dependent finescale turbulent shear generations in the Pacific tropical-extratropical upper ocean. Nat. Commun., 9, 4086, https://doi.org/10.1038/s41467-018-06260-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., X. Zhang, B. Qiu, W. Zhao, C. Zhou, X. Huang, and J. Tian, 2021: Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays. J. Phys. Oceanogr., 51, 187206, https://doi.org/10.1175/JPO-D-20-0100.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., Z. Xu, R. Robertson, Q. Li, Y. Wang, and B. Yin, 2021: The three-dimensional internal tide radiation and dissipation in the Mariana arc-trench system. J. Geophys. Res. Oceans, 126, e2020JC016502, https://doi.org/10.1029/2020JC016502.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 472 472 53
Full Text Views 317 317 41
PDF Downloads 309 309 47