Impact of Precipitation on Ocean Responses during a Tropical Cyclone

Fu Liu aSchool of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China

Search for other papers by Fu Liu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9674-452X
,
Ralf Toumi bDepartment of Physics, Imperial College of London, London, United Kingdom

Search for other papers by Ralf Toumi in
Current site
Google Scholar
PubMed
Close
,
Han Zhang cState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
dSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
eState Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China

Search for other papers by Han Zhang in
Current site
Google Scholar
PubMed
Close
, and
Dake Chen cState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
dSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
fSchool of Oceanography, Shanghai Jiao Tong University, Shanghai, China

Search for other papers by Dake Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation plays a crucial role in modulating upper-ocean salinity and the formation of the barrier layer, which affects the development of tropical cyclones (TCs). This study performed idealized simulations to investigate the influence of precipitation on the upper ocean. Precipitation acts to suppress the wind-induced sea surface reduction and generates an asymmetric warming response with a rightward bias. There is substantial vertical change with a cooling anomaly in the subsurface, which is about 3 times larger than the surface warming. The mean tropical cyclone heat potential is locally increased, but the net effect across the cyclone footprint is small. The impact of precipitation on the ocean tends to saturate for extreme precipitation, suggesting a nonlinear feedback. A prevailing driver of the model behavior is that the freshwater flux from precipitation strengthens the stratification and increases current shear in the upper ocean, trapping more kinetic energy in the surface layer and subsequently weakening near-inertial waves in the deep ocean. This study highlights the competing roles of TC precipitation and wind. Because the TC category is weaker than category 3, the warming anomaly is caused by reduced vertical mixing, whereas for stronger storms, the advection process is most important.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Han Zhang, zhanghan@sio.org.cn

Abstract

Precipitation plays a crucial role in modulating upper-ocean salinity and the formation of the barrier layer, which affects the development of tropical cyclones (TCs). This study performed idealized simulations to investigate the influence of precipitation on the upper ocean. Precipitation acts to suppress the wind-induced sea surface reduction and generates an asymmetric warming response with a rightward bias. There is substantial vertical change with a cooling anomaly in the subsurface, which is about 3 times larger than the surface warming. The mean tropical cyclone heat potential is locally increased, but the net effect across the cyclone footprint is small. The impact of precipitation on the ocean tends to saturate for extreme precipitation, suggesting a nonlinear feedback. A prevailing driver of the model behavior is that the freshwater flux from precipitation strengthens the stratification and increases current shear in the upper ocean, trapping more kinetic energy in the surface layer and subsequently weakening near-inertial waves in the deep ocean. This study highlights the competing roles of TC precipitation and wind. Because the TC category is weaker than category 3, the warming anomaly is caused by reduced vertical mixing, whereas for stronger storms, the advection process is most important.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Han Zhang, zhanghan@sio.org.cn
Save
  • Alford, M. H., R.-C. Lien, H. Simmons, J. Klymak, S. Ramp, Y. J. Yang, D. Tang, and M.-H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355, https://doi.org/10.1175/2010JPO4388.1.

    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 44764492, https://doi.org/10.1175/MWR-D-15-0065.1.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/10.1073/pnas.1201364109.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., G. R. Foltz, L. R. Leung, and K. A. Emanuel, 2016: Global warming-induced upper-ocean freshening and the intensification of super typhoons. Nat. Commun., 7, 13670, https://doi.org/10.1038/ncomms13670.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., G. R. Foltz, L. R. Leung, J. Kaplan, W. Xu, N. Reul, and B. Chapron, 2020: Pronounced impact of salinity on rapidly intensifying tropical cyclones. Bull. Amer. Meteor. Soc., 101, E1497E1511, https://doi.org/10.1175/BAMS-D-19-0303.1.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., G. R. Foltz, L. R. Leung, and S. M. Hagos, 2022: Impact of rainfall on tropical cyclone-induced sea surface cooling. Geophys. Res. Lett., 49, e2022GL098187, https://doi.org/10.1029/2022GL098187.

    • Search Google Scholar
    • Export Citation
  • Black, W. J., and T. D. Dickey, 2008: Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. J. Geophys. Res., 113, C08009, https://doi.org/10.1029/2007JC004358.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, C. Sabine, Y. Kawai, H. Ichikawa, P. Freitag, and K. Ronnholm, 2011: Upper ocean response to Typhoon Choi-Wan as measured by the Kuroshio Extension observatory mooring. J. Geophys. Res., 116, C02031, https://doi.org/10.1029/2010JC006548.

    • Search Google Scholar
    • Export Citation
  • Brizuela, N. G., T. M. S. Johnston, M. H. Alford, O. Asselin, D. L. Rudnick, J. N. Moum, E. J. Thompson, S. Wang, and C.-Y. Lee, 2023: A vorticity-divergence view of internal wave generation by a fast-moving tropical cyclone: Insights from Super Typhoon Mangkhut. J. Geophys. Res. Oceans, 128, e2022JC019400, https://doi.org/10.1029/2022JC019400.

    • Search Google Scholar
    • Export Citation
  • Chang, I., M. L. Bentley, and J. M. Shepherd, 2014: A global climatology of extreme rainfall rates in the inner core of intense tropical cyclones. Phys. Geogr., 35, 478496, https://doi.org/10.1080/02723646.2014.964353.

    • Search Google Scholar
    • Export Citation
  • Chaudhuri, D., D. Sengupta, E. D’Asaro, R. Venkatesan, and M. Ravichandran, 2019: Response of the salinity-stratified Bay of Bengal to Cyclone Phailin. J. Phys. Oceanogr., 49, 11211140, https://doi.org/10.1175/JPO-D-18-0051.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Search Google Scholar
    • Export Citation
  • Cravatte, S., T. Delcroix, D. Zhang, M. McPhaden, and J. Leloup, 2009: Observed freshening and warming of the western Pacific warm pool. Climate Dyn., 33, 565589, https://doi.org/10.1007/s00382-009-0526-7.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Domingues, R., and Coauthors, 2015: Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations. Geophys. Res. Lett., 42, 71317138, https://doi.org/10.1002/2015GL065378.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, https://doi.org/10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guan, S., W. Zhao, J. Huthnance, J. Tian, and J. Wang, 2014: Observed upper ocean response to Typhoon Megi (2010) in the northern South China Sea. J. Geophys. Res. Oceans, 119, 31343157, https://doi.org/10.1002/2013JC009661.

    • Search Google Scholar
    • Export Citation
  • Guzman, O., and H. Jiang, 2021: Global increase in tropical cyclone rain rate. Nat. Commun., 12, 5344, https://doi.org/10.1038/s41467-021-25685-2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hlywiak, J., and D. S. Nolan, 2019: The influence of oceanic barrier layers on tropical cyclone intensity as determined through idealized, coupled numerical simulations. J. Phys. Oceanogr., 49, 17231745, https://doi.org/10.1175/JPO-D-18-0267.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., T. B. Sanford, and J. Imberger, 2009: Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J. Geophys. Res., 114, C12023, https://doi.org/10.1029/2009JC005603.

    • Search Google Scholar
    • Export Citation
  • Hughes, L. A., 1952: On the low-level wind structure of tropical cyclones. J. Meteor., 9, 422428, https://doi.org/10.1175/1520-0469(1952)009<0422:OTLLSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., and C. J. Koblinsky, 2007: Effects of precipitation on the upper-ocean response to a hurricane. Mon. Wea. Rev., 135, 22072225, https://doi.org/10.1175/MWR3366.1.

    • Search Google Scholar
    • Export Citation
  • Jarugula, S. L., and M. J. McPhaden, 2022: Ocean mixed layer response to two post-monsoon cyclones in the Bay of Bengal in 2018. J. Geophys. Res. Oceans, 127, e2022JC018874, https://doi.org/10.1029/2022JC018874.

    • Search Google Scholar
    • Export Citation
  • Jones, S., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., M. Lengaigne, J. Vialard, G. Madec, C. E. Menkes, E. M. Vincent, S. Jullien, and B. Barnier, 2013: Observation-based estimates of surface cooling inhibition by heavy precipitation under tropical cyclones. J. Phys. Oceanogr., 43, 205221, https://doi.org/10.1175/JPO-D-12-085.1.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 16 80316 821, https://doi.org/10.1029/2000JC900072.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, F., H. Zhang, J. Ming, J. Zheng, D. Tian, and D. Chen, 2020: Importance of precipitation on the upper ocean salinity response to Typhoon Kalmaegi (2014). Water, 12, 614, https://doi.org/10.3390/w12020614.

    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Climate, 24, 11381153, https://doi.org/10.1175/2010JCLI3763.1.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks Jr., and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Precipitation Measuring Mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 16451660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., P. Chen, H. Yu, P. Fang, T. Gong, X. Wang, and S. Song, 2022: Parameterized tropical cyclone precipitation model for catastrophe risk assessment in China. J. Appl. Meteor. Climatol., 61, 12911303, https://doi.org/10.1175/JAMC-D-21-0157.1.

    • Search Google Scholar
    • Export Citation
  • Madala, R. V., and S. A. Piacsek, 1975: Numerical simulation of asymmetric hurricanes on a β-plane with vertical shear. Tellus, 27A, 453468, https://doi.org/10.3402/tellusa.v27i5.10172.

    • Search Google Scholar
    • Export Citation
  • Neetu, S., M. Lengaigne, E. M. Vincent, J. Vialard, G. Madec, G. Samson, M. R. Ramesh Kumar, and F. Durand, 2012: Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. J. Geophys. Res., 117, C12020, https://doi.org/10.1029/2012JC008433.

    • Search Google Scholar
    • Export Citation
  • Newinger, C., and R. Toumi, 2015: Potential impact of the colored Amazon and Orinoco plume on tropical cyclone intensity. J. Geophys. Res. Oceans, 120, 12961317, https://doi.org/10.1002/2014JC010533.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1979: Observations of a rain-formed mixed layer. J. Phys. Oceanogr., 9, 643649, https://doi.org/10.1175/1520-0485(1979)009<0643:OOARFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reul, N., B. Chapron, S. A. Grodsky, S. Guimbard, V. Kudryavtsev, G. R. Foltz, and K. Balaguru, 2021: Satellite observations of the sea surface salinity response to tropical cyclones. Geophys. Res. Lett., 48, e2020GL091478, https://doi.org/10.1029/2020GL091478.

    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, B. Jaimes, and J. K. Brewster, 2017: Upper ocean observations in eastern Caribbean Sea reveal barrier layer within a warm core eddy. J. Geophys. Res. Oceans, 122, 10571071, https://doi.org/10.1002/2016JC012339.

    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, and B. J. de la Cruz, 2019: The impact of the Amazon–Orinoco River plume on enthalpy flux and air–sea interaction within Caribbean Sea tropical cyclones. Mon. Wea. Rev., 147, 931950, https://doi.org/10.1175/MWR-D-18-0295.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Steffen, J., and M. Bourassa, 2018: Barrier layer development local to tropical cyclones based on Argo float observations. J. Phys. Oceanogr., 48, 19511968, https://doi.org/10.1175/JPO-D-17-0262.1.

    • Search Google Scholar
    • Export Citation
  • Steffen, J., and M. Bourassa, 2020: Upper-ocean response to precipitation forcing in an ocean model hindcast of Hurricane Gonzalo. J. Phys. Oceanogr., 50, 32193234, https://doi.org/10.1175/JPO-D-19-0277.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., G. Vecchi, and B. Soden, 2021: Sea surface salinity response to tropical cyclones based on satellite observations. Remote Sens., 13, 420, https://doi.org/10.3390/rs13030420.

    • Search Google Scholar
    • Export Citation
  • Tu, S., J. Xu, J. C. L. Chan, K. Huang, F. Xu, and L. S. Chiu, 2021: Recent global decrease in the inner-core rain rate of tropical cyclones. Nat. Commun., 12, 1948, https://doi.org/10.1038/s41467-021-22304-y.

    • Search Google Scholar
    • Export Citation
  • Tu, S., J. C. L. Chan, J. Xu, Q. Zhong, W. Zhou, and Y. Zhang, 2022: Increase in tropical cyclone rain rate with translation speed. Nat. Commun., 13, 7325, https://doi.org/10.1038/s41467-022-35113-8.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., M. Demaria, and R. J. Kuligowski, 2007: Evaluation of GFDL and simple statistical model precipitation forecasts for U.S. landfalling tropical storms. Wea. Forecasting, 22, 5670, https://doi.org/10.1175/WAF972.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Han, Y. Qi, and W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans, 52, 367385, https://doi.org/10.1016/j.dynatmoce.2011.05.002.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235, https://doi.org/10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Wu, T. Chen, Q. Yang, B. Han, and H. Zhang, 2021: Effects of wave–current interaction on the eastern China coastal waters during Super Typhoon Lekima (2019). J. Phys. Oceanogr., 51, 16111636, https://doi.org/10.1175/JPO-D-20-0224.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, https://doi.org/10.1175/2010JAS3387.1.

    • Search Google Scholar
    • Export Citation
  • Yan, Y., L. Li, and C. Wang, 2017: The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J. Geophys. Res. Oceans, 122, 48294844, https://doi.org/10.1002/2017JC012694.

    • Search Google Scholar
    • Export Citation
  • Ye, S., R.-H. Zhang, and H. Wang, 2023: The role played by tropical cyclones-induced freshwater flux forcing in the upper-ocean responses: A case for Typhoon Yutu (2018). Ocean Modell., 184, 102211, https://doi.org/10.1016/j.ocemod.2023.102211.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., 2023: Modulation of upper ocean vertical temperature structure and heat content by a fast-moving tropical cyclone. J. Phys. Oceanogr., 53, 493508, https://doi.org/10.1175/JPO-D-22-0132.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., H. He, W.-Z. Zhang, and D. Tian, 2021: Upper ocean response to tropical cyclones: A review. Geosci. Lett, 8, 1, https://doi.org/10.1186/s40562-020-00170-8.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and J. C. L. Chan, 2017: Changes in tropical cyclone intensity with translation speed and mixed-layer depth: Idealized WRF-ROMS coupled model simulations. Quart. J. Roy. Meteor. Soc., 143, 152163, https://doi.org/10.1002/qj.2905.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 409 409 61
Full Text Views 174 174 28
PDF Downloads 152 152 32