Intrathermocline Eddy with Lens-Shaped Low Potential Vorticity and Diabatic Forcing Mechanism in the South China Sea

Yuyi Liu aState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
bCollege of Marine Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yuyi Liu in
Current site
Google Scholar
PubMed
Close
and
Zhiyou Jing aState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Zhiyou Jing in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Intrathermocline eddies (ITEs), characterized by subsurface lens-shaped low potential vorticity (PV), are pervasive in the ocean. However, the abundance and generation mechanisms of these low-PV lenses are poorly understood owing to their weak surface signals and awkward sizes, which present an observational barrier. Using in situ observations of the northern South China Sea (NSCS), a typical ITE with a lens-shaped low PV at a core depth of 30–150 m and a horizontal size of ∼150 km was captured in May 2021. Combined with PV budget analysis, we investigate the underlying generation mechanism of low PVs within these ITEs using high-resolution reanalysis products. The results suggest that wintertime surface buoyancy loss driven by atmospheric diabatic forcing rather than frictional forcing is a crucial favorable condition for the ITE formation. These enhanced surface buoyancy losses produce a net upward PV flux and decrease PV in the weakly stratified and deep winter mixed layer, which are preconditioned by anticyclonic eddies (AEs). While surface heating in the following spring tends to weaken the surface buoyancy loss and gradually causes a downward PV flux, the surface-injected high PV subsequently caps the low-PV water within the surface-intensified AEs and transforms them into ITEs. Approximately 22% of the 58 AEs detected by satellite altimetry in the NSCS are ITEs. More importantly, the lens-shaped low PVs within them are produced primarily by the enhanced surface buoyancy loss during wintertime. These findings provide a new dynamic explanation for the low-PV generation in ITEs, highlighting the crucial role of atmospheric diabatic forcing.

Significance Statement

Intrathermocline eddies (ITEs), characterized by a lens-like isopycnal structure that bounds low potential vorticity (PV), are active in the oceanic interior. Although a few previous studies revealed the existence of ITEs in the South China Sea, the source and dynamic generation mechanisms of the lens-shaped low PV still remain elusive. We find that the enhanced surface buoyancy loss due to atmospheric diabatic forcing drives an upward surface PV flux and is identified to produce the low PV. The preexisting anticyclonic eddy, combined with seasonal surface heating in spring, can be easily transformed into the ITE. This study provides a new dynamic understanding for the generation mechanism of ITEs’ low PVs and highlights the contribution of atmospheric diabatic forcing.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyou Jing, jingzhiyou@scsio.ac.cn

Abstract

Intrathermocline eddies (ITEs), characterized by subsurface lens-shaped low potential vorticity (PV), are pervasive in the ocean. However, the abundance and generation mechanisms of these low-PV lenses are poorly understood owing to their weak surface signals and awkward sizes, which present an observational barrier. Using in situ observations of the northern South China Sea (NSCS), a typical ITE with a lens-shaped low PV at a core depth of 30–150 m and a horizontal size of ∼150 km was captured in May 2021. Combined with PV budget analysis, we investigate the underlying generation mechanism of low PVs within these ITEs using high-resolution reanalysis products. The results suggest that wintertime surface buoyancy loss driven by atmospheric diabatic forcing rather than frictional forcing is a crucial favorable condition for the ITE formation. These enhanced surface buoyancy losses produce a net upward PV flux and decrease PV in the weakly stratified and deep winter mixed layer, which are preconditioned by anticyclonic eddies (AEs). While surface heating in the following spring tends to weaken the surface buoyancy loss and gradually causes a downward PV flux, the surface-injected high PV subsequently caps the low-PV water within the surface-intensified AEs and transforms them into ITEs. Approximately 22% of the 58 AEs detected by satellite altimetry in the NSCS are ITEs. More importantly, the lens-shaped low PVs within them are produced primarily by the enhanced surface buoyancy loss during wintertime. These findings provide a new dynamic explanation for the low-PV generation in ITEs, highlighting the crucial role of atmospheric diabatic forcing.

Significance Statement

Intrathermocline eddies (ITEs), characterized by a lens-like isopycnal structure that bounds low potential vorticity (PV), are active in the oceanic interior. Although a few previous studies revealed the existence of ITEs in the South China Sea, the source and dynamic generation mechanisms of the lens-shaped low PV still remain elusive. We find that the enhanced surface buoyancy loss due to atmospheric diabatic forcing drives an upward surface PV flux and is identified to produce the low PV. The preexisting anticyclonic eddy, combined with seasonal surface heating in spring, can be easily transformed into the ITE. This study provides a new dynamic understanding for the generation mechanism of ITEs’ low PVs and highlights the contribution of atmospheric diabatic forcing.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiyou Jing, jingzhiyou@scsio.ac.cn
Save
  • Allen, J. T., R. T. Pollard, and A. L. New, 2012: How do eddies modify the stratification of the thermocline? Ocean Variability and Acoustic Propagation, J. Potter and A. Warn-Varnas, Eds., Springer, 432–448.

  • Archer, M., A. Schaeffer, S. Keating, M. Roughan, R. Holmes, and L. Siegelman, 2020: Observation of submesoscale variability and frontal subduction within the mesoscale eddy field of Tasman Sea. J. Phys. Oceanogr., 50, 15091529, https://doi.org/10.1175/JPO-D-19-0131.1.

    • Search Google Scholar
    • Export Citation
  • Assassi, C., and Coauthors, 2016: An index distinguish surface- and subsurface-intensified vortices from surface observations. J. Phys. Oceanogr., 46, 25292552, https://doi.org/10.1175/JPO-D-15-0122.1.

    • Search Google Scholar
    • Export Citation
  • Barboni, A., S. Coadou-Chaventon, A. Stegner, B. Le Vu, and F. Dumas, 2023: How subsurface and double-core anticyclones intensify the winter mixed-layer deepening in the Mediterranean Sea. Ocean Sci., 19, 229250, https://doi.org/10.5194/os-19-229-2023.

    • Search Google Scholar
    • Export Citation
  • Barceló-Llull, B., E. Pallàs-Sanz, P. Sangrà, A. Martínez-Marrero, S. N. Estrada-Allis, and J. Arístegui, 2017a: Ageostrophic secondary circulation in a subtropical intrathermocline eddy. J. Phys. Oceanogr., 47, 11071123, https://doi.org/10.1175/JPO-D-16-0235.1.

    • Search Google Scholar
    • Export Citation
  • Barceló-Llull, B., and Coauthors, 2017b: Anatomy of a subtropical intrathermocline eddy. Deep-Sea Res. I, 124, 126139, https://doi.org/10.1016/j.dsr.2017.03.012.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and E. C. Brady, 1989: Eddy momentum and heat fluxes and their effect on the circulation of the equatorial Pacific Ocean. J. Mar. Res., 47, 5579, https://doi.org/10.1357/002224089785076389.

    • Search Google Scholar
    • Export Citation
  • Centurioni, L. R., P. P. Niiler, and D.-K. Lee, 2004: Observations of Inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. J. Phys. Oceanogr., 34, 113121, https://doi.org/10.1175/1520-0485(2004)034<0113:OOIOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Czeschel, R., F. Schütte, R. A. Weller, and L. Stramma, 2018: Transport, properties, and life cycles of mesoscale eddies in the eastern tropical South Pacific. Ocean Sci., 14, 731750, https://doi.org/10.5194/os-14-731-2018.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Search Google Scholar
    • Export Citation
  • Davey, M. K., and P. D. Killworth, 1984: Isolated waves and eddies in a shallow water model. J. Phys. Oceanogr., 14, 10471064, https://doi.org/10.1175/1520-0485(1984)014<1047:IWAEIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fisher, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans, 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • de Marez, C., T. Meunier, M. Morvan, P. L’Hegaret, and X. Carton, 2020: Study of the stability of a large realistic cyclonic eddy. Ocean Modell., 146, 101540, https://doi.org/10.1016/j.ocemod.2019.101540.

    • Search Google Scholar
    • Export Citation
  • de Marez, C., M. L. Corre, and J. Gula, 2021: The influence of merger and convection on an anticyclonic eddy trapped in a bowl. Ocean Modell., 167, 101874, https://doi.org/10.1016/j.ocemod.2021.101874.

    • Search Google Scholar
    • Export Citation
  • Dilmahamod, A. F., B. Aguiar-Gonzalez, P. Penven, C. J. C. Reason, W. P. M. De Ruijter, N. Malan, and J. C. Hermes, 2018: SIDDIES corridor: A major east-west pathway of long-lived surface and subsurface eddies crossing the subtropical South Indian Ocean. J. Geophys. Res. Oceans, 123, 54065425, https://doi.org/10.1029/2018JC013828.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., R. R. Mied, P. C. Mignerey, and A. F. Schuetz, 1982: Compact, intrathermocline eddies in the Sargasso Sea. J. Geophys. Res., 87, 385393, https://doi.org/10.1029/JC087iC01p00385.

    • Search Google Scholar
    • Export Citation
  • Early, J. J., R. M. Samelson, and D. B. Chelton, 2011: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr., 41, 15351555, https://doi.org/10.1175/2011JPO4601.1.

    • Search Google Scholar
    • Export Citation
  • Firing, E., J. Ranada, and P. Caldwell, 1995: Processing ADCP data with the CODAS software system version 3.1. Joint Institute for Marine and Atmospheric Research, University of Hawaii, 226 pp., https://currents.soest.hawaii.edu/docs/adcp_doc/_downloads/c3a77cffd8275a62d72683daa6632fea/original_manual.pdf.

  • Garreau, P., F. Dumas, S. Louazel, A. Stegner, and B. Le Vu, 2018: High-resolution observations and tracking of a dual-core anticyclonic eddy in the Algerian Basin. J. Geophys. Res. Oceans, 123, 93209339, https://doi.org/10.1029/2017JC013667.

    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Search Google Scholar
    • Export Citation
  • Gaube, P., C. C. Chickadel, R. Branch, and A. Jessup, 2019: Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale. Geophys. Res. Lett., 46, 26902695, https://doi.org/10.1029/2018GL080807.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and P. P. Niiler, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res. Oceanogr. Abstr., 20, 141177, https://doi.org/10.1016/0011-7471(73)90049-1.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., C. F. Giulivi, C. M. Lee, H. H. Furey, A. Bower, and L. Talley, 2002: Japan/East Sea intrathermocline eddies. J. Phys. Oceanogr., 32, 19601974, https://doi.org/10.1175/1520-0485(2002)032<1960:JESIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org/10.1002/2015GL063731.

    • Search Google Scholar
    • Export Citation
  • Gula, J., T. M. Blacic, and R. E. Todd, 2019: Submesoscale coherent vortices in the Gulf Stream. Geophys. Res. Lett., 46, 27042714, https://doi.org/10.1029/2019GL081919.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Jagannathan, A., K. Srinivasan, J. C. McWilliams, M. J. Molemaker, and A. L. Stewart, 2021: Boundary layer-mediated vorticity generation in currents over sloping bathymetry. J. Phys. Oceanogr., 51, 17571778, https://doi.org/10.1175/JPO-D-20-0253.1.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and Coauthors, 2015: Open ocean dead zones in the tropical North Atlantic Ocean. Biogeosciences, 12, 25972605, https://doi.org/10.5194/bg-12-2597-2015.

    • Search Google Scholar
    • Export Citation
  • Kostianoy, A. G., and I. M. Belkin, 1989: A survey of observations on intrathermocline eddies in the world ocean. Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence, J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier Oceanography Series, Vol. 50, Elsevier, 821841, https://doi.org/10.1016/S0422-9894(08)70223-X.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., A. J. G. Nurser, I. Stevens, and J.-B. Sallèe, 2011: Subduction over the southern Indian Ocean in a high-resolution atmosphere-ocean coupled model. J. Climate, 24, 38303849, https://doi.org/10.1175/2011JCLI3888.1.

    • Search Google Scholar
    • Export Citation
  • L’Hégaret, P., and Coauthors, 2014: Evidence of Mediterranean water dipole collision in the Gulf of Cadiz. J. Geophys. Res. Oceans, 119, 53375359, https://doi.org/10.1002/2014JC009972.

    • Search Google Scholar
    • Export Citation
  • L’Hégaret, P., X. Carton, S. Louazel, and G. Boutin, 2016: Mesoscale eddies and submesoscale structures of Persian Gulf Water off the Omani coast in spring 2011. Ocean Sci., 12, 687701, https://doi.org/10.5194/os-12-687-2016.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2018: Recent updates to the Copernicus marine service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci., 14, 10931126, https://doi.org/10.5194/os-14-1093-2018.

    • Search Google Scholar
    • Export Citation
  • Lin, H., J. Hu, Z. Liu, I. M. Belkin, Z. Sun, and J. Zhu, 2017: A peculiar lens-shaped structure observed in the South China Sea. Sci. Rep., 7, 478, https://doi.org/10.1038/s41598-017-00593-y.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., and A. J. G. Nurser, 1992: Fluid dynamics of oceanic thermocline ventilation. J. Phys. Oceanogr., 22, 583595, https://doi.org/10.1175/1520-0485(1992)022<0583:FDOOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCoy, D., D. Bianchi, and A. L. Stewart, 2020: Global observations of submesoscale coherent vortices in the ocean. Prog. Oceanogr., 189, 102452, https://doi.org/10.1016/j.pocean.2020.102452.

    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., Jr., and Coauthors, 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 10211026, https://doi.org/10.1126/science.1136256.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1985: Submesoscale, coherent vortices in the ocean. Rev. Geophys., 23, 165182, https://doi.org/10.1029/RG023i002p00165.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • McWilliams, J. C., 2021: Oceanic frontogenesis. Annu. Rev. Mar. Sci., 13, 227253, https://doi.org/10.1146/annurev-marine-032320-120725.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Search Google Scholar
    • Export Citation
  • Moschos, E., A. Barboni, and A. Stegner, 2022: Why do inverse eddy surface temperature anomalies emerge? The case of the Mediterranean Sea. Remote Sens., 14, 3807, https://doi.org/10.3390/rs14153807.

    • Search Google Scholar
    • Export Citation
  • Nauw, J. J., H. M. van Aken, J. R. E. Lutjeharms, and W. P. M. de Ruijter, 2006: Intrathermocline eddies in the southern Indian Ocean. J. Geophys. Res., 111, C03006, https://doi.org/10.1029/2005JC002917.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., J. T. Allen, H. Leach, V. H. Strass, and R. T. Pollard, 2001: Mesoscale subduction at the Antarctic polar front driven by baroclinic instability. J. Phys. Oceanogr., 31, 20872107, https://doi.org/10.1175/1520-0485(2001)031<2087:MSATAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oka, E., and B. Qiu, 2012: Progress of North Pacific mode water research in the past decade. J. Oceanogr., 68, 520, https://doi.org/10.1007/s10872-011-0032-5.

    • Search Google Scholar
    • Export Citation
  • Oka, E., T. Suga, C. Sukigara, K. Toyama, K. Shimada, and J. Yoshida, 2011: “Eddy resolving” observation of the North Pacific subtropical mode water. J. Phys. Oceanogr., 41, 666681, https://doi.org/10.1175/2011JPO4501.1.

    • Search Google Scholar
    • Export Citation
  • Pelland, N. A., C. C. Eriksen, and C. M. Lee, 2013: Subthermocline eddies over the Washington continental slope as observed by Seagliders, 2003–09. J. Phys. Oceanogr., 43, 20252053, https://doi.org/10.1175/JPO-D-12-086.1.

    • Search Google Scholar
    • Export Citation
  • Peng, J.-P., P. Holtermann, and L. Umlauf, 2020: Frontal instability and energy dissipation in a submesoscale upwelling filament. J. Phys. Oceanogr., 50, 20172035, https://doi.org/10.1175/JPO-D-19-0270.1.

    • Search Google Scholar
    • Export Citation
  • Pérez, J. P. C., E. Pallàs-Sanz, M. Tenreiro, T. Meunier, J. Jouanno, and A. Ruiz-Angulo, 2022: Overturning instabilities across a warm core ring from glider observations. J. Geophys. Res. Oceans, 127, e2021JC017527, https://doi.org/10.1029/2021JC017527.

    • Search Google Scholar
    • Export Citation
  • Perfect, B., N. Kumar, and J. J. Riley, 2020: Energetics of seamount wakes. Part I: Energy exchange. J. Phys. Oceanogr., 50, 13651382, https://doi.org/10.1175/JPO-D-19-0105.1.

    • Search Google Scholar
    • Export Citation
  • Pietri, A., and J. Karstensen, 2018: Dynamical characterization of a low oxygen submesoscale coherent vortex in the eastern North Atlantic Ocean. J. Geophys. Res. Oceans, 123, 20492065, https://doi.org/10.1002/2017JC013177.

    • Search Google Scholar
    • Export Citation
  • Qi, J., Y. Du, J. Chi, D. L. Yi, D. Li, and B. Yin, 2022: Impacts of El Niño on the South China Sea surface salinity as seen from satellites. Environ. Res. Lett., 17, 054040, https://doi.org/10.1088/1748-9326/ac6a6a.

    • Search Google Scholar
    • Export Citation
  • Qu, T., H. Mitsudera, and T. Yamagata, 2000: Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res. Oceans, 105, 64156424, https://doi.org/10.1029/1999JC900323.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, and I. Fukumori, 2013: Formation of salinity maximum water and its contribution to the overturning circulation in the North Atlantic as revealed by a global general circulation model. J. Geophys. Res. Oceans, 118, 19821994, https://doi.org/10.1002/jgrc.20152.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1986: Vorticity dynamics of the oceanic general circulation. Annu. Rev. Fluid Mech., 18, 433497, https://doi.org/10.1146/annurev.fl.18.010186.002245.

    • Search Google Scholar
    • Export Citation
  • Seo, H., A. C. Subramanian, H. Song, and J. S. Chowdary, 2019: Coupled effects of ocean current on wind stress in the Bay of Bengal: Eddy energetics and upper ocean stratification. Deep-Sea Res. II, 168, 104617, https://doi.org/10.1016/j.dsr2.2019.07.005.

    • Search Google Scholar
    • Export Citation
  • Shapiro, G. I., W. Zenk, S. L. Meschanov, and K. L. Schultz Tokos, 1995: Self-similarity of the Meddy family in the eastern North Atlantic. Oceanol. Acta, 18, 2942.

    • Search Google Scholar
    • Export Citation
  • Shi, F., Y. Luo, and L. Xu, 2018: Volume and transport of eddy-trapped mode water south of the Kuroshio Extension. J. Geophys. Res. Oceans, 123, 87498761, https://doi.org/10.1029/2018JC014176.

    • Search Google Scholar
    • Export Citation
  • Su, J., 2004: Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River estuary. Cont. Shelf Res., 24, 17451760, https://doi.org/10.1016/j.csr.2004.06.005.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., Z. Zhang, B. Qiu, C. Zhou, W. Zhao, and J. Tian, 2022: Subsurface mesoscale eddies observed in the northeastern South China Sea: Dynamic features and water mass transport. J. Phys. Oceanogr., 52, 841855, https://doi.org/10.1175/JPO-D-21-0177.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466, https://doi.org/10.1175/JPO2830.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2008: Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity. Dyn. Atmos. Oceans, 45, 252273, https://doi.org/10.1016/j.dynatmoce.2008.02.002.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Thomsen, S., T. Kanzow, G. Krahmann, R. J. Greatbatch, M. Dengler, and G. Lavik, 2016: The formation of a subsurface anticyclonic eddy in the Peru-Chile undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions. J. Geophys. Res. Oceans, 121, 476501, https://doi.org/10.1002/2015JC010878.

    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, https://doi.org/10.1029/2003GL018532.

    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Chen, and J. Su, 2008: Winter eddy genesis in the eastern South China Sea due to orographic wind jets. J. Phys. Oceanogr., 38, 726732, https://doi.org/10.1175/2007JPO3868.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Y. Du, Y. Zhang, T. Wang, M. Wang, and Z. Jing, 2023: Subsurface anticyclonic eddy transited from Kuroshio shedding eddy in the northern South China Sea. J. Phys. Oceanogr., 53, 841861, https://doi.org/10.1175/JPO-D-22-0106.1.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., L. N. Thomas, J. Gula, and J. C. McWilliams, 2018: Effects of the submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr., 48, 21412165, https://doi.org/10.1175/JPO-D-17-0219.1.

    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1977: Intensification of the Gulf Stream after the winter of 1976-77. Nature, 270, 415417, https://doi.org/10.1038/270415a0.

    • Search Google Scholar
    • Export Citation
  • Xue, H., F. Chai, N. Pettigrew, D. Xu, M. Shi, and J. Xu, 2004: Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res., 109, C02017, https://doi.org/10.1029/2002JC001724.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Z. Zhang, J. C. McWilliams, Z. Sun, W. Zhao, and J. Tian, 2022: Submesoscale coherent vortices observed in the northeastern South China Sea. J. Geophys. Res. Oceans, 127, e2021JC018117, https://doi.org/10.1029/2021JC018117.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 430 430 60
Full Text Views 247 247 18
PDF Downloads 284 284 21