Near-Surface Atmospheric Response to Meso- and Submesoscale Current and Thermal Feedbacks

Carlos Conejero aUniversité de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), Toulouse, France

Search for other papers by Carlos Conejero in
Current site
Google Scholar
PubMed
Close
,
Lionel Renault aUniversité de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), Toulouse, France

Search for other papers by Lionel Renault in
Current site
Google Scholar
PubMed
Close
,
Fabien Desbiolles bDepartment of Earth and Environmental Sciences, Università di Milano–Biocca, Milan, Italy
cCIMA Research Foundation, Savona, Italy

Search for other papers by Fabien Desbiolles in
Current site
Google Scholar
PubMed
Close
,
J. C. McWilliams dDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
Hervé Giordani eMétéo-France, Toulouse, France

Search for other papers by Hervé Giordani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Current feedback (CFB) and thermal feedback (TFB) have been shown to strongly influence both atmospheric and oceanic dynamics at the oceanic mesoscale (10–250 km). At smaller scales, oceanic submesoscale currents (SMCs; 0.1–10 km) have a major influence on the ocean’s energy budget, variability, and ecosystems. However, submesoscale air–sea interactions are not well understood because of observational and modeling limitations related to their scales. Here, we use a realistic submesoscale-permitting coupled oceanic and atmospheric model to quantify the spatiotemporal variability of TFB and CFB coupling in the northwest tropical Atlantic Ocean. While CFB still acts as a submesoscale eddy killer by inducing an energy sink from the SMCs to the atmosphere, it appears to be more efficient at the submesoscale by approximately 30% than at the mesoscale. Submesoscale CFB affects the surface stress, however, the finite time scale of SMCs for adjusting the atmospheric boundary layer results in a diminished low-level wind response, weakening partial ocean reenergization by about 70%. Unlike at the mesoscale, submesoscale CFB induces stress/wind convergence/divergence, influencing the atmospheric boundary layer through vertical motions. The linear relationship between the surface stress derivative or wind derivative fields and sea surface temperature gradients, widespread at the mesoscale, decreases by approximately 35% ± 7% or 77% ± 10%, respectively, at the submesoscale. In addition, submesoscale TFB induces turbulent heat fluxes comparable to those at the mesoscale. Seasonal variability in meso- and submesoscale CFB and TFB coupling is mostly related to background wind speed. Also, disentangling submesoscale CFB and TFB is challenging because they can reinforce or counteract each other.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carlos Conejero, carlos.conejero@univ-tlse3.fr

Abstract

Current feedback (CFB) and thermal feedback (TFB) have been shown to strongly influence both atmospheric and oceanic dynamics at the oceanic mesoscale (10–250 km). At smaller scales, oceanic submesoscale currents (SMCs; 0.1–10 km) have a major influence on the ocean’s energy budget, variability, and ecosystems. However, submesoscale air–sea interactions are not well understood because of observational and modeling limitations related to their scales. Here, we use a realistic submesoscale-permitting coupled oceanic and atmospheric model to quantify the spatiotemporal variability of TFB and CFB coupling in the northwest tropical Atlantic Ocean. While CFB still acts as a submesoscale eddy killer by inducing an energy sink from the SMCs to the atmosphere, it appears to be more efficient at the submesoscale by approximately 30% than at the mesoscale. Submesoscale CFB affects the surface stress, however, the finite time scale of SMCs for adjusting the atmospheric boundary layer results in a diminished low-level wind response, weakening partial ocean reenergization by about 70%. Unlike at the mesoscale, submesoscale CFB induces stress/wind convergence/divergence, influencing the atmospheric boundary layer through vertical motions. The linear relationship between the surface stress derivative or wind derivative fields and sea surface temperature gradients, widespread at the mesoscale, decreases by approximately 35% ± 7% or 77% ± 10%, respectively, at the submesoscale. In addition, submesoscale TFB induces turbulent heat fluxes comparable to those at the mesoscale. Seasonal variability in meso- and submesoscale CFB and TFB coupling is mostly related to background wind speed. Also, disentangling submesoscale CFB and TFB is challenging because they can reinforce or counteract each other.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carlos Conejero, carlos.conejero@univ-tlse3.fr
Save
  • Bachman, S. D., and A. Klocker, 2020: Interaction of jets and submesoscale dynamics leads to rapid ocean ventilation. J. Phys. Oceanogr., 50, 28732883, https://doi.org/10.1175/JPO-D-20-0117.1.

    • Search Google Scholar
    • Export Citation
  • Bai, Y., A. F. Thompson, A. B. Villas Bôas, P. Klein, H. S. Torres, and D. Menemenlis, 2023: Sub-mesoscale wind-front interactions: The combined impact of thermal and current feedback. Geophys. Res. Lett., 50, e2023GL104807, https://doi.org/10.1029/2023GL104807.

    • Search Google Scholar
    • Export Citation
  • Betts, A., and M. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Bye, J. A., 1985: Large-scale momentum exchange in the coupled atmosphere-ocean. Coupled Ocean-Atmosphere Models, Elsevier Oceanography Series, Vol. 40, Elsevier, 51–61.

  • Capet, X., J. C. Mcwilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., G. Roullet, P. Klein, and G. Maze, 2016: Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J. Phys. Oceanogr., 46, 33653384, https://doi.org/10.1175/JPO-D-16-0050.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23 (4), 5269, https://doi.org/10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https;//doi.org/10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2007: Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495517, https://doi.org/10.1175/JPO3025.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, X., W. Dewar, E. Chassignet, M. Bourassa, S. Morey, and G. Gopalakrishnan, 2022: On the feedback between air-sea turbulent momentum flux and oceanic submesoscale processes. J. Geophys. Res. Oceans, 127, e2022JC018767, https://doi.org/10.1029/2022JC018767.

    • Search Google Scholar
    • Export Citation
  • Contreras, M., L. Renault, and P. Marchesiello, 2023: Understanding energy pathways in the Gulf Stream. J. Phys. Oceanogr., 53, 719736, https://doi.org/10.1175/JPO-D-22-0146.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modell., 4950, 121, https://doi.org/10.1016/j.ocemod.2012.03.003.

    • Search Google Scholar
    • Export Citation
  • Desbiolles, F., B. Blanke, A. Bentamy, and N. Grima, 2014: Origin of fine-scale wind stress curl structures in the Benguela and Canary upwelling systems. J. Geophys. Res. Oceans, 119, 79317948, https://doi.org/10.1002/2014JC010015.

    • Search Google Scholar
    • Export Citation
  • Desbiolles, F., A. N. Meroni, L. Renault, and C. Pasquero, 2023: Environmental control of wind response to sea surface temperature patterns in reanalysis dataset. J. Climate, 36, 38813893, https://doi.org/10.1175/JCLI-D-22-0373.1.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 16531667, https://doi.org/10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211, https://doi.org/10.1175/JPO2842.1.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92108, https://doi.org/10.3402/tellusa.v62i2.15680.

    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Search Google Scholar
    • Export Citation
  • Gaube, P., C. Chickadel, R. Branch, and A. Jessup, 2019: Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale. Geophys. Res. Lett., 46, 26902695, https://doi.org/10.1029/2018GL080807.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic bight. J. Phys. Oceanogr., 46, 305325, https://doi.org/10.1175/JPO-D-14-0258.1.

    • Search Google Scholar
    • Export Citation
  • Hausmann, U., A. Czaja, and J. Marshall, 2017: Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale. Climate Dyn., 48, 12971307, https://doi.org/10.1007/s00382-016-3142-3.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-Pac. J. Atmos. Sci., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jousse, A., A. Hall, F. Sun, and J. Teixeira, 2016: Causes of WRF surface energy fluxes biases in a stratocumulus region. Climate Dyn., 46, 571584, https://doi.org/10.1007/s00382-015-2599-9.

    • Search Google Scholar
    • Export Citation
  • Jullien, S., S. Masson, V. Oerder, G. Samson, F. Colas, and L. Renault, 2020: Impact of ocean–atmosphere current feedback on ocean mesoscale activity: Regional variations and sensitivity to model resolution. J. Climate, 33, 25852602, https://doi.org/10.1175/JCLI-D-19-0484.1.

    • Search Google Scholar
    • Export Citation
  • Kessouri, F., D. Bianchi, L. Renault, J. C. McWilliams, H. Frenzel, and C. A. Deutsch, 2020: Submesoscale currents modulate the seasonal cycle of nutrients and productivity in the California Current System. Global Biogeochem. Cycles, 34, e2020GB006578, https://doi.org/10.1029/2020GB006578.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, https://doi.org/10.1007/s00382-012-1500-3.

    • Search Google Scholar
    • Export Citation
  • Klein, P., and Coauthors, 2019: Ocean-scale interactions from space. Earth Space Sci., 6, 795817, https://doi.org/10.1029/2018EA000492.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Larrañaga, M., L. Renault, and J. Jouanno, 2022: Partial control of the Gulf of Mexico dynamics by the current feedback to the atmosphere. J. Phys. Oceanogr., 52, 25152530, https://doi.org/10.1175/JPO-D-21-0271.1.

    • Search Google Scholar
    • Export Citation
  • Lellouche, J.-M., and Coauthors, 2018: Recent updates to the Copernicus Marine service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci., 14, 10931126, https://doi.org/10.5194/os-14-1093-2018.

    • Search Google Scholar
    • Export Citation
  • Lemarié, F., 2015: Numerical modification of atmospheric models to include the feedback of oceanic currents on air-sea fluxes in ocean-atmosphere coupled models. Tech. Rep. RT-0464, 10 pp., https://inria.hal.science/hal-01184711.

  • Lemarié, F., J. Kurian, A. F. Shchepetkin, M. J. Molemaker, F. Colas, and J. C. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, https://doi.org/10.1016/j.ocemod.2011.11.007.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. J. S. Franks, and K. S. Smith, 2018: The role of submesoscale currents in structuring marine ecosystems. Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and G. Wang, 2021: The effects of eddy size on the sea surface heat flux. Geophys. Res. Lett., 48, e2021GL095687, https://doi.org/10.1029/2021GL095687.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 23442360, https://doi.org/10.1175/JCLI3404.1.

    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3 (1–2), 120, https://doi.org/10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., L. Debreu, and X. Couvelard, 2009: Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution. Ocean Modell., 26, 156169, https://doi.org/10.1016/j.ocemod.2008.09.004.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, https://doi.org/10.1016/S1353-2561(01)00041-X.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and B. Fox-Kemper, 2013: Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech., 730, 464490, https://doi.org/10.1017/jfm.2013.348.

    • Search Google Scholar
    • Export Citation
  • Ménesguen, C., S. Le Gentil, P. Marchesiello, and N. Ducousso, 2018: Destabilization of an oceanic meddy-like vortex: Energy transfers and significance of numerical settings. J. Phys. Oceanogr., 48, 11511168, https://doi.org/10.1175/jpo-d-17-0126.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, 456A, 12171280, https://doi.org/10.1098/rspa.2000.0560.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 59165942, https://doi.org/10.1175/JCLI-D-11-00230.1.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833838, https://doi.org/10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penven, P., V. Echevin, J. Pasapera, F. Colas, and J. Tam, 2005: Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current system: A modeling approach. J. Geophys. Res., 110, C10021, https://doi.org/10.1029/2005JC002945.

    • Search Google Scholar
    • Export Citation
  • Perlin, N., S. P. de Szoeke, D. B. Chelton, R. M. Samelson, E. D. Skyllingstad, and L. W. O’Neill, 2014: Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations. Mon. Wea. Rev., 142, 42844307, https://doi.org/10.1175/MWR-D-13-00332.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., A. Hall, and J. C. McWilliams, 2016a: Orographic shaping of US West Coast wind profiles during the upwelling season. Climate Dyn., 46, 273289, https://doi.org/10.1007/s00382-015-2583-4.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016b: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 34393453, https://doi.org/10.1175/JPO-D-16-0115.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016c: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, https://doi.org/10.1175/JPO-D-15-0232.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and S. Masson, 2017a: Satellite observations of imprint of oceanic current on wind stress by air-sea coupling. Sci. Rep., 7, 17747, https://doi.org/10.1038/s41598-017-17939-1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and P. Penven, 2017b: Modulation of the Agulhas Current retroflection and leakage by oceanic current interaction with the atmosphere in coupled simulations. J. Phys. Oceanogr., 47, 20772100, https://doi.org/10.1175/JPO-D-16-0168.1.

    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and J. Gula, 2018: Dampening of submesoscale currents by air-sea stress coupling in the Californian Upwelling System. Sci. Rep., 8, 13388, https://doi.org/10.1038/s41598-018-31602-3.

    • Search Google Scholar
    • Export Citation
  • Renault, L., F. Lemarié, and T. Arsouze, 2019a: On the implementation and consequences of the oceanic currents feedback in ocean–atmosphere coupled models. Ocean Modell., 141, 101423, https://doi.org/10.1016/j.ocemod.2019.101423.

    • Search Google Scholar
    • Export Citation
  • Renault, L., S. Masson, V. Oerder, S. Jullien, and F. Colas, 2019b: Disentangling the mesoscale ocean-atmosphere interactions. J. Geophys. Res. Oceans, 124, 21642178, https://doi.org/10.1029/2018JC014628.

    • Search Google Scholar
    • Export Citation
  • Renault, L., S. Masson, T. Arsouze, G. Madec, and J. C. McWilliams, 2020: Recipes for how to force oceanic model dynamics. J. Adv. Model. Earth Syst., 12, e2019MS001715, https://doi.org/10.1029/2019MS001715.

    • Search Google Scholar
    • Export Citation
  • Renault, L., T. Arsouze, and J. Ballabrera-Poy, 2021: On the influence of the current feedback to the atmosphere on the western Mediterranean Sea dynamics. J. Geophys. Res. Oceans, 126, e2020JC016664, https://doi.org/10.1029/2020JC016664.

    • Search Google Scholar
    • Export Citation
  • Renault, L., S. Masson, V. Oerder, F. Colas, and J. McWilliams, 2023: Modulation of the oceanic mesoscale activity by the mesoscale thermal feedback to the atmosphere. J. Phys. Oceanogr., 53, 16511667, https://doi.org/10.1175/JPO-D-22-0256.1.

    • Search Google Scholar
    • Export Citation
  • Rooth, C., and L. Xie, 1992: Air-sea boundary layer dynamics in the presence of mesoscale surface currents. J. Geophys. Res., 97, 14 43114 438, https://doi.org/10.1029/92JC01296.

    • Search Google Scholar
    • Export Citation
  • Seo, H., 2017: Distinct influence of air–sea interactions mediated by mesoscale sea surface temperature and surface current in the Arabian Sea. J. Climate, 30, 80618080, https://doi.org/10.1175/JCLI-D-16-0834.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, https://doi.org/10.1175/JPO-D-15-0086.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., and Coauthors, 2023: Ocean mesoscale and frontal-scale ocean–atmosphere interactions and influence on large-scale climate: A review. J. Climate, 36, 19812013, https://doi.org/10.1175/JCLI-D-21-0982.1.

    • Search Google Scholar
    • Export Citation
  • Shao, M., and Coauthors, 2019: The variability of winds and fluxes observed near submesoscale fronts. J. Geophys. Res. Oceans, 124, 77567780, https://doi.org/10.1029/2019JC015236.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Soufflet, Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu, and R. Benshila, 2016: On effective resolution in ocean models. Ocean Modell., 98, 3650, https://doi.org/10.1016/j.ocemod.2015.12.004.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., J. C. McWilliams, L. Renault, H. G. Hristova, J. Molemaker, and W. S. Kessler, 2017: Topographic and mixed layer submesoscale currents in the near-surface southwestern tropical Pacific. J. Phys. Oceanogr., 47, 12211242, https://doi.org/10.1175/JPO-D-16-0216.1.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., R. Barkan, and J. C. McWilliams, 2023: A forward energy flux at submesoscales driven by frontogenesis. J. Phys. Oceanogr., 53, 287305, https://doi.org/10.1175/JPO-D-22-0001.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2021: EUREC4A. Earth Syst. Sci. Data, 13, 40674119, https://doi.org/10.5194/essd-13-4067-2021.

  • Strobach, E., P. Klein, A. Molod, A. A. Fahad, A. Trayanov, D. Menemenlis, and H. Torres, 2022: Local air-sea interactions at ocean mesoscale and submesoscale in a western boundary current. Geophys. Res. Lett., 49, e2021GL097003, https://doi.org/10.1029/2021GL097003.

    • Search Google Scholar
    • Export Citation
  • Su, Z., J. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Search Google Scholar
    • Export Citation
  • Su, Z., H. Torres, P. Klein, A. F. Thompson, L. Siegelman, J. Wang, D. Menemenlis, and C. Hill, 2020: High-frequency submesoscale motions enhance the upward vertical heat transport in the global ocean. J. Geophys. Res. Oceans, 125, e2020JC016544, https://doi.org/10.1029/2020JC016544.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, J. C. Weil, E. G. Patton, and H. J. S. Fernando, 2020: Marine boundary layers above heterogeneous SST: Across-front winds. J. Atmos. Sci., 77, 42514275, https://doi.org/10.1175/JAS-D-20-0062.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, J. C. Weil, E. G. Patton, and H. J. S. Fernando, 2021: Marine boundary layers above heterogeneous SST: Alongfront winds. J. Atmos. Sci., 78, 32973315, https://doi.org/10.1175/JAS-D-21-0072.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2012: On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves. J. Fluid Mech., 711, 620640, https://doi.org/10.1017/jfm.2012.416.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38, https://doi.org/10.1029/177GM04.

  • Uchida, T., D. Balwada, R. Abernathey, G. McKinley, S. Smith, and M. Levy, 2019: The contribution of submesoscale over mesoscale eddy iron transport in the open Southern Ocean. J. Adv. Model. Earth Syst., 11, 39343958, https://doi.org/10.1029/2019MS001805.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373388, https://doi.org/10.5194/gmd-6-373-2013.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 14921499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and R. S. Arthur, 2018: Response of the atmospheric boundary layer to submesoscale sea surface temperature fronts. Geophys. Res. Lett., 45, 13 50513 512, https://doi.org/10.1029/2018GL081034.

    • Search Google Scholar
    • Export Citation
  • Yuan, M., F. Li, X. Ma, and P. Yang, 2022: Spatio-temporal variability of surface turbulent heat flux feedback for mesoscale sea surface temperature anomaly in the global ocean. Front. Mar. Sci., 9, 957796, https://doi.org/10.3389/fmars.2022.957796.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 662 662 125
Full Text Views 276 276 12
PDF Downloads 285 285 15