Intrinsically Episodic Antarctic Shelf Intrusions of Circumpolar Deep Water via Canyons

Ellie Q. Y. Ong aClimate Change Research Center, Australian Center for Excellence in Antarctic Science and Australian Research Council Center of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Ellie Q. Y. Ong in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0392-7915
,
Edward Doddridge bAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Nipaluna/Hobart, Tasmania, Australia

Search for other papers by Edward Doddridge in
Current site
Google Scholar
PubMed
Close
,
Navid C. Constantinou cResearch School of Earth Sciences and Australian Research Council Center of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Navid C. Constantinou in
Current site
Google Scholar
PubMed
Close
,
Andrew McC. Hogg cResearch School of Earth Sciences and Australian Research Council Center of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
, and
Matthew H. England dCentre for Marine Science and Innovation and ARC Australian Center for Excellence in Antarctic Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The structure of the Antarctic Slope Current at the continental shelf is crucial in governing the poleward transport of warm water. Canyons on the continental slope may provide a pathway for warm water to cross the slope current and intrude onto the continental shelf underneath ice shelves, which can increase rates of ice shelf melting, leading to reduced buttressing of ice shelves, accelerating glacial flow and hence increased sea level rise. Observations and modeling studies of the Antarctic Slope Current and cross-shelf warm water intrusions are limited, particularly in the East Antarctica region. To explore this topic, an idealized configuration of the Antarctic Slope Current is developed, using an eddy-resolving isopycnal model that emulates the dynamics and topography of the East Antarctic sector. Warm water intrusions via canyons are found to occur in discrete episodes of large onshore flow induced by eddies, even in the absence of any temporal variability in external forcings, demonstrating the intrinsic nature of these intrusions to the slope current system. Canyon width is found to play a key role in modulating cross-shelf exchanges; warm water transport through narrower canyons is more irregular than transport through wider canyons. The intrinsically episodic cross-shelf transport is found to be driven by feedbacks between wind energy input and eddy generation in the Antarctic Slope Current. Improved understanding of the intrinsic variability of warm water intrusions can help guide future observational and modeling studies in the analysis of eddy impacts on Antarctic shelf circulation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ellie Q. Y. Ong, ellie.ong@unsw.edu.au

Abstract

The structure of the Antarctic Slope Current at the continental shelf is crucial in governing the poleward transport of warm water. Canyons on the continental slope may provide a pathway for warm water to cross the slope current and intrude onto the continental shelf underneath ice shelves, which can increase rates of ice shelf melting, leading to reduced buttressing of ice shelves, accelerating glacial flow and hence increased sea level rise. Observations and modeling studies of the Antarctic Slope Current and cross-shelf warm water intrusions are limited, particularly in the East Antarctica region. To explore this topic, an idealized configuration of the Antarctic Slope Current is developed, using an eddy-resolving isopycnal model that emulates the dynamics and topography of the East Antarctic sector. Warm water intrusions via canyons are found to occur in discrete episodes of large onshore flow induced by eddies, even in the absence of any temporal variability in external forcings, demonstrating the intrinsic nature of these intrusions to the slope current system. Canyon width is found to play a key role in modulating cross-shelf exchanges; warm water transport through narrower canyons is more irregular than transport through wider canyons. The intrinsically episodic cross-shelf transport is found to be driven by feedbacks between wind energy input and eddy generation in the Antarctic Slope Current. Improved understanding of the intrinsic variability of warm water intrusions can help guide future observational and modeling studies in the analysis of eddy impacts on Antarctic shelf circulation.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ellie Q. Y. Ong, ellie.ong@unsw.edu.au

Supplementary Materials

    • Supplemental Materials (ZIP 5.82 MB)
Save
  • Adcroft, A., and Coauthors, 2019: The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., X. Zhai, and R. J. Greatbatch, 2016: Energetics of the global ocean: The role of mesoscale eddies. Indo-Pacific Climate Variability and Predictability, S. K. Behera and T. Yamagata, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 7, World Scientific, 109–134.

  • Bai, Y., Y. Wang, and A. L. Stewart, 2021: Does topographic form stress impede prograde ocean currents? J. Phys. Oceanogr., 51, 26172638, https://doi.org/10.1175/JPO-D-20-0189.1.

    • Search Google Scholar
    • Export Citation
  • Boeira Dias, F., S. R. Rintoul, O. Richter, B. K. Galton-Fenzi, J. D. Zika, V. Pellichero, and P. Uotila, 2023: Sensitivity of simulated water mass transformation on the Antarctic shelf to tides, topography and model resolution. Front. Mar. Sci., 10, 1027704, https://doi.org/10.3389/fmars.2023.1027704.

    • Search Google Scholar
    • Export Citation
  • Chekroun, M. D., H. Dijkstra, T. Şengül, and S. Wang, 2022: Transitions of zonal flows in a two-layer quasi-geostrophic ocean model. Nonlinear Dyn., 109, 18871904, https://doi.org/10.1007/s11071-022-07529-w.

    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., and A. M. Hogg, 2019: Eddy saturation of the Southern Ocean: A baroclinic versus barotropic perspective. Geophys. Res. Lett., 46, 12 20212 212, https://doi.org/10.1029/2019GL084117.

    • Search Google Scholar
    • Export Citation
  • Daae, K., T. Hattermann, E. Darelius, and I. Fer, 2017: On the effect of topography and wind on warm water inflow—An idealized study of the southern Weddell Sea continental shelf system. J. Geophys. Res. Oceans, 122, 26222641, https://doi.org/10.1002/2016JC012541.

    • Search Google Scholar
    • Export Citation
  • Daae, K., T. Hattermann, E. Darelius, R. D. Mueller, K. A. Naughten, R. Timmermann, and H. H. Hellmer, 2020: Necessary conditions for warm inflow toward the Filchner Ice Shelf, Weddell Sea. Geophys. Res. Lett., 47, e2020GL089237, https://doi.org/10.1029/2020GL089237.

    • Search Google Scholar
    • Export Citation
  • Darelius, E., K. Makinson, K. Daae, I. Fer, P. R. Holland, and K. W. Nicholls, 2014: Hydrography and circulation in the Filchner Depression, Weddell Sea, Antarctica. J. Geophys. Res. Oceans, 119, 57975814, https://doi.org/10.1002/2014JC010225.

    • Search Google Scholar
    • Export Citation
  • Darelius, E., I. Fer, and K. W. Nicholls, 2016: Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nat. Commun., 7, 12300, https://doi.org/10.1038/ncomms12300.

    • Search Google Scholar
    • Export Citation
  • DeConto, R. M., and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597, https://doi.org/10.1038/nature17145.

    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. Van Den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, https://doi.org/10.1038/nature12567.

    • Search Google Scholar
    • Export Citation
  • Fennel, W., and M. Schmidt, 1991: Responses to topographical forcing. J. Fluid Mech., 223, 209240, https://doi.org/10.1017/S0022112091001404.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, G. H., F. S. Paolo, S. Adusumilli, and H. A. Fricker, 2019: Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett., 46, 13 90313 909, https://doi.org/10.1029/2019GL085027.

    • Search Google Scholar
    • Export Citation
  • Gwyther, D. E., B. K. Galton-Fenzi, J. R. Hunter, and J. L. Roberts, 2014: Simulated melt rates for the Totten and Dalton ice shelves. Ocean Sci., 10, 267279, https://doi.org/10.5194/os-10-267-2014.

    • Search Google Scholar
    • Export Citation
  • Gwyther, D. E., T. J. O’Kane, B. K. Galton-Fenzi, D. P. Monselesan, and J. S. Greenbaum, 2018: Intrinsic processes drive variability in basal melting of the Totten Glacier Ice Shelf. Nat. Commun., 9, 3141, https://doi.org/10.1038/s41467-018-05618-2.

    • Search Google Scholar
    • Export Citation
  • Hattermann, T., L. H. Smedsrud, O. A. Nøst, J. M. Lilly, and B. K. Galton-Fenzi, 2014: Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean. Ocean Modell., 82, 2844, https://doi.org/10.1016/j.ocemod.2014.07.004.

    • Search Google Scholar
    • Export Citation
  • Herraiz-Borreguero, L., and A. C. Naveira Garabato, 2022: Poleward shift of Circumpolar Deep Water threatens the East Antarctic Ice Sheet. Nat. Climate Change, 12, 728734, https://doi.org/10.1038/s41558-022-01424-3.

    • Search Google Scholar
    • Export Citation
  • Herraiz-Borreguero, L., J. A. Church, I. Allison, B. Peña-Molino, R. Coleman, M. Tomczak, and M. Craven, 2016: Basal melt, seasonal water mass transformation, ocean current variability, and deep convection processes along the Amery Ice Shelf calving front, East Antarctica. J. Geophys. Res. Oceans, 121, 49464965, https://doi.org/10.1002/2016JC011858.

    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., and B. A. King, 2002: Water masses and baroclinic transports in the South Atlantic and Southern oceans. J. Mar. Res., 60, 639676, https://doi.org/10.1357/002224002762688687.

    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., and Coauthors, 2014: Ocean processes at the Antarctic continental slope. Philos. Trans. Roy. Soc., A372, 20130047, https://doi.org/10.1098/rsta.2013.0047.

    • Search Google Scholar
    • Export Citation
  • Hirano, D., and Coauthors, 2020: Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica. Nat. Commun., 11, 4221, https://doi.org/10.1038/s41467-020-17527-4.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., and J. R. Blundell, 2006: Interdecadal variability of the Southern Ocean. J. Phys. Oceanogr., 36, 16261645, https://doi.org/10.1175/JPO2934.1.

    • Search Google Scholar
    • Export Citation
  • Huneke, W. G. C., A. Klocker, and B. K. Galton-Fenzi, 2019: Deep bottom mixed layer drives intrinsic variability of the Antarctic Slope Front. J. Phys. Oceanogr., 49, 31633177, https://doi.org/10.1175/JPO-D-19-0044.1.

    • Search Google Scholar
    • Export Citation
  • Huneke, W. G. C., A. K. Morrison, and A. M. C. Hogg, 2022: Spatial and subannual variability of the Antarctic Slope Current in an eddying ocean–sea ice model. J. Phys. Oceanogr., 52, 347361, https://doi.org/10.1175/JPO-D-21-0143.1.

    • Search Google Scholar
    • Export Citation
  • Huneke, W. G. C., A. K. Morrison, and A. M. C. Hogg, 2023: Decoupling of the surface and bottom-intensified Antarctic Slope Current in regions of dense shelf water export. Geophys. Res. Lett., 50, e2023GL104834, https://doi.org/10.1029/2023GL104834.

    • Search Google Scholar
    • Export Citation
  • Isachsen, P. E., 2011: Baroclinic instability and eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations? Ocean Modell., 39, 183199, https://doi.org/10.1016/j.ocemod.2010.09.007.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Z. Wang, C. Cheng, R. Xia, B. Li, and Z. Xie, 2017: Modeling modified Circumpolar Deep Water intrusions onto the Prydz Bay continental shelf, East Antarctica. J. Geophys. Res. Oceans, 122, 51985217, https://doi.org/10.1002/2016JC012336.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Z. Wang, X. Liang, X. Li, X. Li, C. Cheng, and D. Qi, 2022: Topography-mediated transport of warm deep water across the continental shelf slope, East Antarctica. J. Phys. Oceanogr., 52, 12951314, https://doi.org/10.1175/JPO-D-22-0023.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557, https://doi.org/10.1175/JPO-D-11-048.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., M. H. P. Ambaum, J. R. Maddison, D. R. Munday, and L. Novak, 2017: Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophys. Res. Lett., 44, 286292, https://doi.org/10.1002/2016GL071702.

    • Search Google Scholar
    • Export Citation
  • McMahon, C. R., and Coauthors, 2023: Southern Ocean pinnipeds provide bathymetric in-sights on the East Antarctic continental shelf. Commun. Earth Environ., 4, 266, https://doi.org/10.1038/s43247-023-00928-w.

    • Search Google Scholar
    • Export Citation
  • Moorman, R., A. K. Morrison, and A. M. C. Hogg, 2020: Thermal responses to Antarctic ice shelf melt in an eddy-rich global ocean-sea ice model. J. Climate, 33, 65996620, https://doi.org/10.1175/JCLI-D-19-0846.1.

    • Search Google Scholar
    • Export Citation
  • Morlighem, M., and Coauthors, 2020: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci., 13, 132137, https://doi.org/10.1038/s41561-019-0510-8.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., A. M. C. Hogg, M. H. England, and P. Spence, 2020: Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons. Sci. Adv., 6, eaav2516, https://doi.org/10.1126/sciadv.aav2516.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Search Google Scholar
    • Export Citation
  • Nakayama, Y., and Coauthors, 2021: Antarctic Slope Current modulates ocean heat intrusions towards Totten Glacier. Geophys. Res. Lett., 48, e2021GL094149, https://doi.org/10.1029/2021GL094149.

    • Search Google Scholar
    • Export Citation
  • Neme, J., M. H. England, and A. M. C. Hogg, 2022: Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett., 49, e2022GL098820, https://doi.org/10.1029/2022GL098820.

    • Search Google Scholar
    • Export Citation
  • Nitsche, F. O., D. Porter, G. Williams, E. A. Cougnon, A. D. Fraser, R. Correia, and R. Guerrero, 2017: Bathymetric control of warm ocean water access along the East Antarctic Margin. Geophys. Res. Lett., 44, 89368944, https://doi.org/10.1002/2017GL074433.

    • Search Google Scholar
    • Export Citation
  • NOAA National Geophysical Data Center, 2009: ETOPO1 1 arc-minute global relief model. NOAA National Centers for Environmental Information, accessed 20 June 2022, https://doi.org/10.7289/V5C8276M.

  • Nøst, O. A., M. Biuw, V. Tverberg, C. Lydersen, T. Hattermann, Q. Zhou, L. H. Smedsrud, and K. M. Kovacs, 2011: Eddy overturning of the Antarctic Slope Front controls glacial melting in the Eastern Weddell Sea. J. Geophys. Res., 116, C11014, https://doi.org/10.1029/2011JC006965.

    • Search Google Scholar
    • Export Citation
  • Ohshima, K. I., and Coauthors, 2013: Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci., 6, 235240, https://doi.org/10.1038/ngeo1738.

    • Search Google Scholar
    • Export Citation
  • Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327331, https://doi.org/10.1126/science.aaa0940.

    • Search Google Scholar
    • Export Citation
  • Peña-Molino, B., M. S. McCartney, and S. R. Rintoul, 2016: Direct observations of the Antarctic Slope Current transport at 113°E. J. Geophys. Res. Oceans, 121, 73907407, https://doi.org/10.1002/2015JC011594.

    • Search Google Scholar
    • Export Citation
  • Ribeiro, N., L. Herraiz-Borreguero, S. R. Rintoul, C. R. McMahon, M. Hindell, R. Harcourt, and G. Williams, 2021: Warm modified Circumpolar Deep Water intrusions drive ice shelf melt and inhibit Dense Shelf Water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans, 126, e2020JC016998, https://doi.org/10.1029/2020JC016998.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. Mouginot, B. Scheuchl, M. Van Den Broeke, M. J. Van Wessem, and M. Morlighem, 2019: Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA, 116, 10951103, https://doi.org/10.1073/pnas.1812883116.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., A. Silvano, B. Pena-Molino, E. van Wijk, M. Rosenberg, J. S. Greenbaum, and D. D. Blankenship, 2016: Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv., 2, e1601610, https://doi.org/10.1126/sciadv.1601610.

    • Search Google Scholar
    • Export Citation
  • Si, Y., A. L. Stewart, and I. Eisenman, 2022: Coupled ocean/sea ice dynamics of the Antarctic Slope Current driven by topographic eddy suppression and sea ice momentum redistribution. J. Phys. Oceanogr., 52, 15631589, https://doi.org/10.1175/JPO-D-21-0142.1.

    • Search Google Scholar
    • Export Citation
  • Si, Y., A. L. Stewart, and I. Eisenman, 2023: Heat transport across the Antarctic Slope Front controlled by cross-slope salinity gradients. Sci. Adv., 9, eadd7049, https://doi.org/10.1126/sciadv.add7049.

    • Search Google Scholar
    • Export Citation
  • Silvano, A., S. R. Rintoul, B. Peña-Molino, W. R. Hobbs, E. Van Wijk, S. Aoki, T. Tamura, and G. D. Williams, 2018: Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci. Adv., 4, eaap9467, https://doi.org/10.1126/sciadv.aap9467.

    • Search Google Scholar
    • Export Citation
  • Silvano, A., S. R. Rintoul, K. Kusahara, B. Peña-Molino, E. Van Wijk, D. E. Gwyther, and G. D. Williams, 2019: Seasonality of warm water intrusions onto the continental shelf near the Totten Glacier. J. Geophys. Res. Oceans, 124, 42724289, https://doi.org/10.1029/2018JC014634.

    • Search Google Scholar
    • Export Citation
  • St-Laurent, P., J. M. Klinck, and M. S. Dinniman, 2013: On the role of coastal troughs in the circulation of warm Circumpolar Deep Water on Antarctic shelves. J. Phys. Oceanogr., 43, 5164, https://doi.org/10.1175/JPO-D-11-0237.1.

    • Search Google Scholar
    • Export Citation
  • Stern, A., L.-P. Nadeau, and D. Holland, 2015: Instability and mixing of zonal jets along an idealized continental shelf break. J. Phys. Oceanogr., 45, 23152338, https://doi.org/10.1175/JPO-D-14-0213.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015: Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett., 42, 432440, https://doi.org/10.1002/2014GL062281.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2016: Eddy generation and jet formation via dense water outflows across the Antarctic continental slope. J. Phys. Oceanogr., 46, 37293750, https://doi.org/10.1175/JPO-D-16-0145.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2019: Acceleration and overturning of the Antarctic Slope Current by winds, eddies, and tides. J. Phys. Oceanogr., 49, 20432074, https://doi.org/10.1175/JPO-D-18-0221.1.

    • Search Google Scholar
    • Export Citation
  • Stokes, C. R., and Coauthors, 2022: Response of the East Antarctic Ice Sheet to past and future climate change. Nature, 608, 275286, https://doi.org/10.1038/s41586-022-04946-0.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., K. J. Heywood, S. Schmidtko, and A. L. Stewart, 2014: Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci., 7, 879884, https://doi.org/10.1038/ngeo2289.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, P. Spence, and K. J. Heywood, 2018: The Antarctic Slope Current in a changing climate. Rev. Geophys., 56, 741770, https://doi.org/10.1029/2018RG000624.

    • Search Google Scholar
    • Export Citation
  • Williams, G. D., S. Aoki, S. S. Jacobs, S. R. Rintoul, T. Tamura, and N. L. Bindoff, 2010: Antarctic bottom water from the Adélie and George V Land coast, East Antarctica (140–149°E). J. Geophys. Res., 115, C04027, https://doi.org/10.1029/2009JC005812.

    • Search Google Scholar
    • Export Citation
  • Williams, W. J., G. G. Gawarkiewicz, and R. C. Beardsley, 2001: The adjustment of a shelfbreak jet to cross-shelf topography. Deep-Sea Res. II, 48, 373393, https://doi.org/10.1016/S0967-0645(00)00085-0.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Search Google Scholar
    • Export Citation
  • Yung, C. K., A. K. Morrison, and A. M. C. Hogg, 2022: Topographic hotspots of Southern Ocean eddy upwelling. Front. Mar. Sci., 9, 855785, https://doi.org/10.3389/fmars.2022.855785.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. Pedlosky, and G. R. Flierl, 2011: Shelf circulation and cross-shelf transport out of a bay driven by eddies from an open-ocean current. Part I: Interaction between a barotropic vortex and a steplike topography. J. Phys. Oceanogr., 41, 889910, https://doi.org/10.1175/2010JPO4496.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3086 2063 0
Full Text Views 963 701 111
PDF Downloads 643 367 42