Suppression of Mesoscale Eddy Mixing by Topographic PV Gradients

Miriam F. Sterl aNIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
bInstitute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands

Search for other papers by Miriam F. Sterl in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8453-2239
,
Joseph H. LaCasce cDepartment of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Joseph H. LaCasce in
Current site
Google Scholar
PubMed
Close
,
Sjoerd Groeskamp aNIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands

Search for other papers by Sjoerd Groeskamp in
Current site
Google Scholar
PubMed
Close
,
Aleksi Nummelin dNORCE Norwegian Research Centre AS, Bergen, Norway
eFinnish Meteorological Institute, Helsinki, Finland

Search for other papers by Aleksi Nummelin in
Current site
Google Scholar
PubMed
Close
,
Pål E. Isachsen cDepartment of Geosciences, University of Oslo, Oslo, Norway
fNorwegian Meteorological Institute, Oslo, Norway

Search for other papers by Pål E. Isachsen in
Current site
Google Scholar
PubMed
Close
, and
Michiel L. J. Baatsen bInstitute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands

Search for other papers by Michiel L. J. Baatsen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Oceanic mesoscale eddy mixing plays a crucial role in Earth’s climate system by redistributing heat, salt, and carbon. For many ocean and climate models, mesoscale eddies still need to be parameterized. This is often done via an eddy diffusivity K, which sets the strength of turbulent downgradient tracer fluxes. A well-known effect is the modulation of K in the presence of background potential vorticity (PV) gradients, which suppresses mixing in the direction of the PV gradients. Topographic slopes can induce such suppression through topographic PV gradients. However, this effect has received little attention, and topographic effects are often not included in parameterizations for K. In this study, we show that it is possible to describe the effect of topography on K analytically in a barotropic framework, using a simple stochastic representation of eddy–eddy interactions. We obtain an analytical expression for the depth-averaged K as a function of the bottom slope, which we validate against diagnosed eddy diffusivities from a numerical model. The obtained analytical expression can be generalized to any constant barotropic PV gradient. Moreover, the expression is consistent with empirical parameterizations for eddy diffusivity over topography from previous studies and provides a physical rationalization for these parameterizations. The new expression helps to understand how eddy diffusivities vary across the ocean, and thus how mesoscale eddies impact ocean mixing processes.

Significance Statement

Large oceanic “whirls,” called eddies, can mix and transport ocean properties such as heat, salt, carbon, and nutrients. Mixing plays an important role for oceanic ecosystems and the climate system. In numerical simulations of Earth’s climate, eddy mixing is typically represented using a simplified expression. However, an effect that is often not included is that eddy mixing is weaker over a sloping seafloor. In most areas of the ocean the bottom slope is steep enough for this effect to be significant. In this study we derive an expression for eddy mixing that accounts for oceanic bottom slopes. The present effort provides a physical basis for eddy mixing over oceanic bottom slopes, justifying their use in climate models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 6 September 2024 to correct a wording error in the abstract that was present when originally published.

Corresponding author: Miriam F. Sterl, miriam.sterl@nioz.nl

Abstract

Oceanic mesoscale eddy mixing plays a crucial role in Earth’s climate system by redistributing heat, salt, and carbon. For many ocean and climate models, mesoscale eddies still need to be parameterized. This is often done via an eddy diffusivity K, which sets the strength of turbulent downgradient tracer fluxes. A well-known effect is the modulation of K in the presence of background potential vorticity (PV) gradients, which suppresses mixing in the direction of the PV gradients. Topographic slopes can induce such suppression through topographic PV gradients. However, this effect has received little attention, and topographic effects are often not included in parameterizations for K. In this study, we show that it is possible to describe the effect of topography on K analytically in a barotropic framework, using a simple stochastic representation of eddy–eddy interactions. We obtain an analytical expression for the depth-averaged K as a function of the bottom slope, which we validate against diagnosed eddy diffusivities from a numerical model. The obtained analytical expression can be generalized to any constant barotropic PV gradient. Moreover, the expression is consistent with empirical parameterizations for eddy diffusivity over topography from previous studies and provides a physical rationalization for these parameterizations. The new expression helps to understand how eddy diffusivities vary across the ocean, and thus how mesoscale eddies impact ocean mixing processes.

Significance Statement

Large oceanic “whirls,” called eddies, can mix and transport ocean properties such as heat, salt, carbon, and nutrients. Mixing plays an important role for oceanic ecosystems and the climate system. In numerical simulations of Earth’s climate, eddy mixing is typically represented using a simplified expression. However, an effect that is often not included is that eddy mixing is weaker over a sloping seafloor. In most areas of the ocean the bottom slope is steep enough for this effect to be significant. In this study we derive an expression for eddy mixing that accounts for oceanic bottom slopes. The present effort provides a physical basis for eddy mixing over oceanic bottom slopes, justifying their use in climate models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 6 September 2024 to correct a wording error in the abstract that was present when originally published.

Corresponding author: Miriam F. Sterl, miriam.sterl@nioz.nl
Save
  • Abernathey, R. P., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, https://doi.org/10.1002/jgrc.20066.

    • Search Google Scholar
    • Export Citation
  • Balwada, D., K. G. Speer, J. H. LaCasce, W. B. Owens, J. Marshall, and R. Ferrari, 2016: Circulation and stirring in the southeast Pacific Ocean and the Scotia Sea sectors of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 46, 20052027, https://doi.org/10.1175/JPO-D-15-0207.1.

    • Search Google Scholar
    • Export Citation
  • Bates, M., R. Tulloch, J. Marshall, and R. Ferrari, 2014: Rationalizing the spatial distribution of mesoscale eddy diffusivity in terms of mixing length theory. J. Phys. Oceanogr., 44, 15231540, https://doi.org/10.1175/JPO-D-13-0130.1.

    • Search Google Scholar
    • Export Citation
  • Bire, S., and C. L. P. Wolfe, 2018: The role of eddies in buoyancy-driven eastern boundary currents. J. Phys. Oceanogr., 48, 28292850, https://doi.org/10.1175/JPO-D-18-0040.1.

    • Search Google Scholar
    • Export Citation
  • Bisits, J. I., G. J. Stanley, and J. D. Zika, 2023: Can we accurately quantify a lateral diffusivity from a single tracer release? J. Phys. Oceanogr., 53, 647659, https://doi.org/10.1175/JPO-D-22-0145.1.

    • Search Google Scholar
    • Export Citation
  • Boland, E. J. D., A. F. Thompson, E. Shuckburgh, and P. H. Haynes, 2012: The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr., 42, 16351651, https://doi.org/10.1175/JPO-D-11-0152.1.

    • Search Google Scholar
    • Export Citation
  • Bolton, T., R. Abernathey, and L. Zanna, 2019: Regional and temporal variability of lateral mixing in the North Atlantic. J. Phys. Oceanogr., 49, 26012614, https://doi.org/10.1175/JPO-D-19-0042.1.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2012: Baroclinic instability of an idealized tidal mixing front. J. Mar. Res., 70, 661688, https://doi.org/10.1357/002224012805262716.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2016: Continental shelf baroclinic instability. Part I: Relaxation from upwelling or downwelling. J. Phys. Oceanogr., 46, 551568, https://doi.org/10.1175/JPO-D-15-0047.1.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2017: Surface cooling, winds, and eddies over the continental shelf. J. Phys. Oceanogr., 47, 879894, https://doi.org/10.1175/JPO-D-16-0196.1.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and D. A. Cherian, 2013: Instability of an idealized tidal mixing front: Symmetric instabilities and frictional effects. J. Mar. Res., 71, 425450, https://doi.org/10.1357/002224013812587582.

    • Search Google Scholar
    • Export Citation
  • Busecke, J. J. M., and R. P. Abernathey, 2019: Ocean mesoscale mixing linked to climate variability. Sci. Adv., 5, eaav5014, https://doi.org/10.1126/sciadv.aav5014.

    • Search Google Scholar
    • Export Citation
  • Buzzicotti, M., B. A. Storer, H. Khatri, S. M. Griffies, and H. Aluie, 2023: Spatio-temporal coarse-graining decomposition of the global ocean geostrophic kinetic energy. J. Adv. Model. Earth Syst., 15, e2023MS003693, https://doi.org/10.1029/2023MS003693.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., Y. Cheng, A. M. Howard, and M. S. Dubovikov, 2019: Three-dimensional, space-dependent mesoscale diffusivity: Derivation and implications. J. Phys. Oceanogr., 49, 10551074, https://doi.org/10.1175/JPO-D-18-0123.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, C., and J.-B. Sallée, 2017: Isopycnal mixing suppression by the Antarctic Circumpolar Current and the Southern Ocean meridional overturning circulation. J. Phys. Oceanogr., 47, 20232045, https://doi.org/10.1175/JPO-D-16-0263.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, R., J. L. McClean, S. T. Gille, and A. Griesel, 2014: Isopycnal eddy diffusivities and critical layers in the Kuroshio Extension from an eddying ocean model. J. Phys. Oceanogr., 44, 21912211, https://doi.org/10.1175/JPO-D-13-0258.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., S. T. Gille, J. L. McClean, G. R. Flierl, and A. Griesel, 2015: A multiwavenumber theory for eddy diffusivities and its application to the southeast Pacific (DIMES) region. J. Phys. Oceanogr., 45, 18771896, https://doi.org/10.1175/JPO-D-14-0229.1.

    • Search Google Scholar
    • Export Citation
  • Chouksey, A., A. Griesel, M. Chouksey, and C. Eden, 2022: Changes in global ocean circulation due to isopycnal diffusion. J. Phys. Oceanogr., 52, 22192235, https://doi.org/10.1175/JPO-D-21-0205.1.

    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1976: Topographic waves in Lake Ontario. J. Phys. Oceanogr., 6, 93103, https://doi.org/10.1175/1520-0485(1976)006<0093:TWILO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1987: Modeling eddy transport of passive tracers. J. Mar. Res., 45, 635666, https://doi.org/10.1357/002224087788326803.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Observing the general circulation with floats. Deep-Sea Res., 38A, S531S571, https://doi.org/10.1016/S0198-0149(12)80023-9.

    • Search Google Scholar
    • Export Citation
  • Delsole, T., 2004: Stochastic models of quasigeostrophic turbulence. Surv. Geophys., 25, 107149, https://doi.org/10.1023/B:GEOP.0000028160.75549.0d.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2008: Dynamical Oceanography. Springer, 407 pp.

  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874, https://doi.org/10.1175/2007JAS2227.1.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Eden, C., 2007: Eddy length scales in the North Atlantic Ocean. J. Geophys. Res., 112, C06004, https://doi.org/10.1029/2006JC003901.

  • Eden, C., 2011: A closure for meso-scale eddy fluxes based on linear instability theory. Ocean Modell., 39, 362369, https://doi.org/10.1016/j.ocemod.2011.05.009.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239, https://doi.org/10.1016/j.ocemod.2007.09.002.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, https://doi.org/10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910, https://doi.org/10.1175/JPO2785.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2019: Challenges and prospects in ocean circulation models. Front. Mar. Sci., 6, 65, https://doi.org/10.3389/fmars.2019.00065.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., D. Bianchi, and M.-A. Pradal, 2013: Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters. Geophys. Res. Lett., 40, 51945198, https://doi.org/10.1002/grl.50998.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 42494255, https://doi.org/10.1002/2015GL064100.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., A. Russell, M.-A. Pradal, and R. Abernathey, 2017: Impact of lateral mixing in the ocean on El Niño in a suite of fully coupled climate models. J. Adv. Model. Earth Syst., 9, 24932513, https://doi.org/10.1002/2017MS000917.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1960: A problem in baroclinic stability. Quart. J. Roy. Meteor. Soc., 86, 237251, https://doi.org/10.1002/qj.49708636813.

    • Search Google Scholar
    • Export Citation
  • Griesel, A., C. Eden, N. Koopmann, and E. Yulaeva, 2015: Comparing isopycnal eddy diffusivities in the Southern Ocean with predictions from linear theory. Ocean Modell., 94, 3345, https://doi.org/10.1016/j.ocemod.2015.08.001.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841, https://doi.org/10.1175/1520-0485(1998)028%3C0831:TGMSF%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., S. M. Griffies, D. Iudicone, R. Marsh, A. J. Nurser, and J. D. Zika, 2019: The water mass transformation framework for ocean physics and biogeochemistry. Annu. Rev. Mar. Sci., 11, 271305, https://doi.org/10.1146/annurev-marine-010318-095421.

    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. H. LaCasce, T. J. McDougall, and M. Rogé, 2020: Full-depth global estimates of ocean mesoscale eddy mixing from observations and theory. Geophys. Res. Lett., 47, e2020GL089425, https://doi.org/10.1029/2020GL089425.

    • Search Google Scholar
    • Export Citation
  • Grooms, I., A. J. Majda, and K. S. Smith, 2015: Stochastic superparameterization in a quasigeostrophic model of the Antarctic Circumpolar Current. Ocean Modell., 85, 115, https://doi.org/10.1016/j.ocemod.2014.10.001.

    • Search Google Scholar
    • Export Citation
  • Gruber, N., Z. Lachkar, H. Frenzel, P. Marchesiello, M. Münnich, J. C. McWilliams, T. Nagai, and G.-K. Plattner, 2011: Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci., 4, 787792, https://doi.org/10.1038/ngeo1273.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, https://doi.org/10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 2000: Low-frequency variability on the western flanks of the Grand Banks. J. Mar. Res., 58, 523545, https://doi.org/10.1357/002224000321511007.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1986: Estimation of oceanic eddy transports from satellite altimetry. Nature, 323, 243244, https://doi.org/10.1038/323243a0.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., and S. S. Kristmannsson, 1984: Stirring and transport of tracer fields by geostrophic turbulence. J. Fluid Mech., 141, 2750, https://doi.org/10.1017/S0022112084000720.

    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., S. Groeskamp, K. D. Stewart, and T. J. McDougall, 2022: Sensitivity of a coarse-resolution global ocean model to a spatially variable neutral diffusivity. J. Adv. Model. Earth Syst., 14, e2021MS002914, https://doi.org/10.1029/2021MS002914.

    • Search Google Scholar
    • Export Citation
  • Isachsen, P. E., 2011: Baroclinic instability and eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations? Ocean Modell., 39, 183199, https://doi.org/10.1016/j.ocemod.2010.09.007.

    • Search Google Scholar
    • Export Citation
  • Isachsen, P. E., and O. A. Nøst, 2012: The air-sea transformation and residual overturning circulation within the Nordic Seas. J. Mar. Res., 70, 3168, https://doi.org/10.1357/002224012800502372.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., A. J. Adcroft, R. Hallberg, and I. M. Held, 2015: Parameterization of eddy fluxes based on a mesoscale energy budget. Ocean Modell., 92, 2841, https://doi.org/10.1016/j.ocemod.2015.05.007.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., A. J. Adcroft, S. Khani, and H. Kong, 2019: Toward an energetically consistent, resolution aware parameterization of ocean mesoscale eddies. J. Adv. Model. Earth Syst., 11, 28442860, https://doi.org/10.1029/2019MS001750.

    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and R. P. Abernathey, 2019: Isopycnal mixing controls deep ocean ventilation. Geophys. Res. Lett., 46, 13 14413 151, https://doi.org/10.1029/2019GL085208.

    • Search Google Scholar
    • Export Citation
  • Juricke, S., S. Danilov, N. Koldunov, M. Oliver, D. V. Sein, D. Sidorenko, and Q. Wang, 2020a: A kinematic kinetic energy backscatter parametrization: From implementation to global ocean simulations. J. Adv. Model. Earth Syst., 12, e2020MS002175, https://doi.org/10.1029/2020MS002175.

    • Search Google Scholar
    • Export Citation
  • Juricke, S., S. Danilov, N. Koldunov, M. Oliver, and D. Sidorenko, 2020b: Ocean kinetic energy backscatter parametrization on unstructured grids: Impact on global eddy-permitting simulations. J. Adv. Model. Earth Syst., 12, e2019MS001855, https://doi.org/10.1029/2019MS001855.

    • Search Google Scholar
    • Export Citation
  • Keffer, T., and G. Holloway, 1988: Estimating Southern Ocean eddy flux of heat and salt from satellite altimetry. Nature, 332, 624626, https://doi.org/10.1038/332624a0.

    • Search Google Scholar
    • Export Citation
  • Khani, S., M. F. Jansen, and A. Adcroft, 2019: Diagnosing subgrid mesoscale eddy fluxes with and without topography. J. Adv. Model. Earth Syst., 11, 39954015, https://doi.org/10.1029/2019MS001721.

    • Search Google Scholar
    • Export Citation
  • Kjellsson, J., and L. Zanna, 2017: The impact of horizontal resolution on energy transfers in global ocean models. Fluids, 2, 45, https://doi.org/10.3390/fluids2030045.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, https://doi.org/10.1175/JPO-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Klocker, A., R. Ferrari, and J. H. LaCasce, 2012: Estimating suppression of eddy mixing by mean flows. J. Phys. Oceanogr., 42, 15661576, https://doi.org/10.1175/JPO-D-11-0205.1.

    • Search Google Scholar
    • Export Citation
  • Kong, H., and M. F. Jansen, 2017: The eddy diffusivity in barotropic β-plane turbulence. Fluids, 2, 54, https://doi.org/10.3390/fluids2040054.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2000: Floats and f/H. J. Mar. Res., 58, 6195, https://doi.org/10.1357/002224000321511205.

  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017GL075430.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and K. G. Speer, 1999: Lagrangian statistics in unforced barotropic flows. J. Mar. Res., 57, 245274, https://doi.org/10.1357/002224099321618218.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and S. Groeskamp, 2020: Baroclinic modes over rough bathymetry and the surface deformation radius. J. Phys. Oceanogr., 50, 28352847, https://doi.org/10.1175/JPO-D-20-0055.1.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer, 2014: Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr., 44, 764780, https://doi.org/10.1175/JPO-D-13-0175.1.

    • Search Google Scholar
    • Export Citation
  • Larichev, V. D., and I. M. Held, 1995: Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25, 22852297, https://doi.org/10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, https://doi.org/10.1029/98JC01738.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., A. J. G. Nurser, A. C. Coward, and B. A. de Cuevas, 2007: Eddy advective and diffusive transports of heat and salt in the Southern Ocean. J. Phys. Oceanogr., 37, 13761393, https://doi.org/10.1175/JPO3057.1.

    • Search Google Scholar
    • Export Citation
  • Mak, J., D. P. Marshall, J. R. Maddison, and S. D. Bachman, 2017: Emergent eddy saturation from an energy constrained eddy parameterisation. Ocean Modell., 112, 125138, https://doi.org/10.1016/j.ocemod.2017.02.007.

    • Search Google Scholar
    • Export Citation
  • Mak, J., J. R. Maddison, D. P. Marshall, and D. R. Munday, 2018: Implementation of a geometrically informed and energetically constrained mesoscale eddy parameterization in an ocean circulation model. J. Phys. Oceanogr., 48, 23632382, https://doi.org/10.1175/JPO-D-18-0017.1.

    • Search Google Scholar
    • Export Citation
  • Mak, J., A. Avdis, T. David, H. S. Lee, Y. Na, Y. Wang, and F. E. Yan, 2022a: On constraining the mesoscale eddy energy dissipation time-scale. J. Adv. Model. Earth Syst., 14, e2022MS003223, https://doi.org/10.1029/2022MS003223.

    • Search Google Scholar
    • Export Citation
  • Mak, J., D. P. Marshall, G. Madec, and J. R. Maddison, 2022b: Acute sensitivity of global ocean circulation and heat content to eddy energy dissipation timescale. Geophys. Res. Lett., 49, e2021GL097259, https://doi.org/10.1029/2021GL097259.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821, https://doi.org/10.1175/JPO2949.1.

    • Search Google Scholar
    • Export Citation
  • Martínez-Moreno, J., A. M. Hogg, and M. H. England, 2022: Climatology, seasonality, and trends of spatially coherent ocean eddies. J. Geophys. Res. Oceans, 127, e2021JC017453, https://doi.org/10.1029/2021JC017453.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, https://doi.org/10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. Naveira Garabato, A. M. Hogg, and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110, https://doi.org/10.1175/2011JCLI4204.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and D. Zhu, 2010a: Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy–mean flow interaction. J. Atmos. Sci., 67, 27012716, https://doi.org/10.1175/2010JAS3432.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and D. Zhu, 2010b: Formation of jets through mixing and forcing of potential vorticity: Analysis and parameterization of beta-plane turbulence. J. Atmos. Sci., 67, 27172733, https://doi.org/10.1175/2009JAS3159.1.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, https://doi.org/10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Nummelin, A., 2023a: Mesoscale eddies over sloping topography—Data. NIRD Research Data Archive, accessed 1 January 2024, https://doi.org/10.11582/2023.00129.

  • Nummelin, A., 2023b: Parameterizing mesoscale eddy buoyancy transport over sloping topography—Model setup. Zenodo, accessed 1 January 2024, https://doi.org/10.5281/zenodo.8227382.

  • Nummelin, A., and P. E. Isachsen, 2024: Parameterizing mesoscale eddy buoyancy transport over sloping topography. J. Adv. Model. Earth Syst., 16, e2023MS003806, https://doi.org/10.1029/2023MS003806.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pennel, R., and I. Kamenkovich, 2014: On the factors controlling the eddy-induced transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 44, 21272138, https://doi.org/10.1175/JPO-D-13-0256.1.

    • Search Google Scholar
    • Export Citation
  • Pradal, M.-A., and A. Gnanadesikan, 2014: How does the Redi parameter for mesoscale mixing impact global climate in an Earth System Model? J. Adv. Model. Earth Syst., 6, 586601, https://doi.org/10.1002/2013MS000273.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech., 5, 136139, https://doi.org/10.1002/zamm.19250050212.

    • Search Google Scholar
    • Export Citation
  • Pringle, J. M., 2001: Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling. J. Geophys. Res., 106, 25892604, https://doi.org/10.1029/2000JC900148.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn., 1, 273302, https://doi.org/10.1080/03091927009365776.

    • Search Google Scholar
    • Export Citation
  • Roach, C. J., D. Balwada, and K. Speer, 2016: Horizontal mixing in the Southern Ocean from Argo float trajectories. J. Geophys. Res. Oceans, 121, 55705586, https://doi.org/10.1002/2015JC011440.

    • Search Google Scholar
    • Export Citation
  • Roach, C. J., D. Balwada, and K. Speer, 2018: Global observations of horizontal mixing from Argo float and surface drifter trajectories. J. Geophys. Res. Oceans, 123, 45604575, https://doi.org/10.1029/2018JC013750.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, and S. R. Rintoul, 2011: Mean-flow and topographic control on surface eddy-mixing in the Southern Ocean. J. Mar. Res., 69, 753777, https://doi.org/10.1357/002224011799849408.

    • Search Google Scholar
    • Export Citation
  • Seland, Ø., and Coauthors, 2020: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev., 13, 61656200, https://doi.org/10.5194/gmd-13-6165-2020.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., and W. R. Young, 2014: Reynolds stress and eddy diffusivity of β-plane shear flow. J. Atmos. Sci., 71, 21692185, https://doi.org/10.1175/JAS-D-13-0246.1.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28, 727739, https://doi.org/10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2016: Eddy generation and jet formation via dense water outflows across the Antarctic continental slope. J. Phys. Oceanogr., 46, 37293750, https://doi.org/10.1175/JPO-D-16-0145.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2018: Circum-Antarctic shoreward heat transport derived from an eddy- and tide-resolving simulation. Geophys. Res. Lett., 45, 834845, https://doi.org/10.1002/2017GL075677.

    • Search Google Scholar
    • Export Citation
  • Stewart, K. D., P. Spence, S. Waterman, J. Le Sommer, J.-M. Molines, J. M. Lilly, and M. H. England, 2015: Anisotropy of eddy variability in the global ocean. Ocean Modell., 95, 5365, https://doi.org/10.1016/j.ocemod.2015.09.005.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1994: Dispersive effects of zonally varying topography on quasigeostrophic Rossby waves. Geophys. Astrophys. Fluid Dyn., 75, 107130, https://doi.org/10.1080/03091929408203650.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20, 196212.