Abstract
Oceanic mesoscale eddy mixing plays a crucial role in Earth’s climate system by redistributing heat, salt, and carbon. For many ocean and climate models, mesoscale eddies still need to be parameterized. This is often done via an eddy diffusivity
Significance Statement
Large oceanic “whirls,” called eddies, can mix and transport ocean properties such as heat, salt, carbon, and nutrients. Mixing plays an important role for oceanic ecosystems and the climate system. In numerical simulations of Earth’s climate, eddy mixing is typically represented using a simplified expression. However, an effect that is often not included is that eddy mixing is weaker over a sloping seafloor. In most areas of the ocean the bottom slope is steep enough for this effect to be significant. In this study we derive an expression for eddy mixing that accounts for oceanic bottom slopes. The present effort provides a physical basis for eddy mixing over oceanic bottom slopes, justifying their use in climate models.
© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
Publisher’s Note: This article was revised on 6 September 2024 to correct a wording error in the abstract that was present when originally published.