A Major Improvement of Atmospheric Wave Boundary Layer Model for Storm Surge Modeling by Including Effect of Wave Breaking on Air–Sea Momentum Exchange

Anyifang Zhang aDepartment of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Anyifang Zhang in
Current site
Google Scholar
PubMed
Close
and
Xiping Yu bDepartment of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China

Search for other papers by Xiping Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate estimation of the wind stress under extreme conditions is crucial for modeling storm surges and storm waves, which is important to the development of a warning system for coastal disaster prevention. The problem, however, is highly challenging owing to the presence of complex ocean surface processes under the action of unusually strong wind. In this study, the existing atmospheric wave boundary layer model is significantly enhanced by including various effects of wave breaking. Both the effect of wave breaking on the dissipation of energy and its effect on the transfer of momentum within the atmospheric boundary layer are carefully formulated. The wind stress coefficients obtained with the enhanced model are shown to be in good agreement with the measurements in not only deep but also shallow waters. The enhanced atmospheric wave boundary layer model is coupled with ocean wave as well as circulation models to simulate typhoon-induced storm surges and storm waves in the Pearl River delta region. The computational results show that the coupled model with improved evaluation of the wind stress is substantially advantageous when compared with existing approaches.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiping Yu, yuxp@sustech.edu.cn

Abstract

Accurate estimation of the wind stress under extreme conditions is crucial for modeling storm surges and storm waves, which is important to the development of a warning system for coastal disaster prevention. The problem, however, is highly challenging owing to the presence of complex ocean surface processes under the action of unusually strong wind. In this study, the existing atmospheric wave boundary layer model is significantly enhanced by including various effects of wave breaking. Both the effect of wave breaking on the dissipation of energy and its effect on the transfer of momentum within the atmospheric boundary layer are carefully formulated. The wind stress coefficients obtained with the enhanced model are shown to be in good agreement with the measurements in not only deep but also shallow waters. The enhanced atmospheric wave boundary layer model is coupled with ocean wave as well as circulation models to simulate typhoon-induced storm surges and storm waves in the Pearl River delta region. The computational results show that the coupled model with improved evaluation of the wind stress is substantially advantageous when compared with existing approaches.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiping Yu, yuxp@sustech.edu.cn
Save
  • Alves, J. H. G., M. L. Banner, and I. R. Young, 2003: Revisiting the Pierson–Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr., 33, 13011323, https://doi.org/10.1175/1520-0485(2003)033<1301:RTPALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and J. Decosmo, 1999: Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Springer, 327–362.

  • Chen, S., F. Qiao, J. A. Zhang, Y. Xue, H. Ma, and S. Chen, 2022: Observed drag coefficient asymmetry in a tropical cyclone. J. Geophys. Res. Oceans, 127, e2021JC018360, https://doi.org/10.1029/2021JC018360.

    • Search Google Scholar
    • Export Citation
  • Chen, X., T. Hara, and I. Ginis, 2020: Impact of shoaling ocean surface waves on wind stress and drag coefficient in coastal waters: 1. Uniform wind. J. Geophys. Res. Oceans, 125, e2020JC016222, https://doi.org/10.1029/2020JC016222.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and X. Yu, 2016: Enhancement of wind stress evaluation method under storm conditions. Climate Dyn., 47, 38333843, https://doi.org/10.1007/s00382-016-3044-4.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and X. Yu, 2017: Sensitivity of storm wave modeling to wind stress evaluation methods. J. Adv. Model. Earth Syst., 9, 893907, https://doi.org/10.1002/2016MS000850.

    • Search Google Scholar
    • Export Citation
  • Dietrich, J. C., and Coauthors, 2012: Performance of the unstructured-mesh, SWAN+ADCIRC model in computing hurricane waves and surge. J. Sci. Comput., 52, 468497, https://doi.org/10.1007/s10915-011-9555-6.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Drazen, D. A., W. K. Melville, and L. Lenain, 2008: Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech., 611, 307332, https://doi.org/10.1017/S0022112008002826.

    • Search Google Scholar
    • Export Citation
  • Du, J., R. Bolaños, X. G. Larsén, and M. Kelly, 2019: Wave boundary layer model in SWAN revisited. Ocean Sci., 15, 361377, https://doi.org/10.5194/os-15-361-2019.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929, https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Georgiou, P. N., A. G. Davenport, and B. J. Vickery, 1983: Design wind speeds in regions dominated by tropical cyclones. J. Wind Eng. Ind. Aerodyn., 13, 139152, https://doi.org/10.1016/0167-6105(83)90136-8.

    • Search Google Scholar
    • Export Citation
  • Hara, T., and S. E. Belcher, 2002: Wind forcing in the equilibrium range of wind-wave spectra. J. Fluid Mech., 470, 223245, https://doi.org/10.1017/S0022112002001945.

    • Search Google Scholar
    • Export Citation
  • Hara, T., and S. E. Belcher, 2004: Wind profile and drag coefficient over mature ocean surface wave spectra. J. Phys. Oceanogr., 34, 23452358, https://doi.org/10.1175/JPO2633.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2011: A note on the ocean surface roughness spectrum. J. Atmos. Oceanic Technol., 28, 436443, https://doi.org/10.1175/2010JTECHO812.1.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, https://doi.org/10.1126/science.1136466.

    • Search Google Scholar
    • Export Citation
  • Jelesnianski, C. P., 1966: Numerical computations of storm surges without bottom stress. Mon. Wea. Rev., 94, 379394, https://doi.org/10.1175/1520-0493(1966)094<0379:NCOSSW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., 2006: On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res., 111, C07020, https://doi.org/10.1029/2005JC002970.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2001: The impact of air-flow separation on the drag of the sea surface. Bound.-Layer Meteor., 98, 155171, https://doi.org/10.1023/A:1018719917275.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., B. Chapron, and V. K. Makin, 2014: Impact of wind waves on the air‐sea fluxes: A coupled model. J. Geophys. Res. Oceans, 119, 12171236, https://doi.org/10.1002/2013JC009412.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., and T. Hara, 2008a: The effect of breaking waves on a coupled model of wind and ocean surface waves. Part I: Mature seas. J. Phys. Oceanogr., 38, 21452163, https://doi.org/10.1175/2008JPO3961.1.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., and T. Hara, 2008b: The effect of breaking waves on a coupled model of wind and ocean surface waves. Part II: Growing seas. J. Phys. Oceanogr., 38, 21642184, https://doi.org/10.1175/2008JPO3962.1.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., T. Hara, and S. E. Belcher, 2007: A model of the air–sea momentum flux and breaking-wave distribution for strongly forced wind waves. J. Phys. Oceanogr., 37, 18111828, https://doi.org/10.1175/JPO3084.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1964: Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res. Oceanogr. Abstr., 11, 529562, https://doi.org/10.1016/0011-7471(64)90001-4.

    • Search Google Scholar
    • Export Citation
  • Lu, X., H. Yu, M. Ying, B. Zhao, S. Zhang, L. Lin, L. Bai, and R. Wan, 2021: Western North Pacific tropical cyclone database created by the China meteorological administration. Adv. Atmos. Sci., 38, 690699, https://doi.org/10.1007/s00376-020-0211-7.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., and V. N. Kudryavtsev, 1999: Coupled sea surface-atmosphere model: 1. Wind over waves coupling. J. Geophys. Res., 104, 76137623, https://doi.org/10.1029/1999JC900006.

    • Search Google Scholar
    • Export Citation
  • Mattocks, C., and C. Forbes, 2008: A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Modell., 25, 95119, https://doi.org/10.1016/j.ocemod.2008.06.008.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., T. Hara, I. Ginis, S. E. Belcher, and H. L. Tolman, 2004: Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci., 61, 23212333, https://doi.org/10.1175/1520-0469(2004)061<2321:EOSWOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009: Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound.-Layer Meteor., 130, 117134, https://doi.org/10.1007/s10546-008-9334-6.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, and T. A. Reinhold, 1996: Hurricane Andrew’s landfall in South Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11, 304328, https://doi.org/10.1175/1520-0434(1996)011<0304:HALISF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Qiu, J., B. Liu, F. Yang, X. Wang, and X. He, 2022: Quantitative stress test of compound coastal-fluvial floods in China’s Pearl River Delta. Earths Future, 10, e2021EF002638, https://doi.org/10.1029/2021EF002638.

    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., S. A. Suslov, and Y.-L. Lin, 2011: Effect of ocean spray on vertical momentum transport under high-wind conditions. Bound.-Layer Meteor., 141 (1), 120, https://doi.org/10.1007/s10546-011-9625-1.

    • Search Google Scholar
    • Export Citation
  • Roberts, K. J., W. J. Pringle, and J. J. Westerink, 2019: OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling. Geosci. Model Dev., 12, 18471868, https://doi.org/10.5194/gmd-12-1847-2019.

    • Search Google Scholar
    • Export Citation
  • Shan, K., Y. Lin, P.-S. Chu, X. Yu, and F. Song, 2023: Seasonal advance of intense tropical cyclones in a warming climate. Nature, 623, 8389, https://doi.org/10.1038/s41586-023-06544-0.

    • Search Google Scholar
    • Export Citation
  • Shankar, C. G., and M. R. Behera, 2019: Wave boundary layer model based wind drag estimation for tropical storm surge modelling in the Bay of Bengal. Ocean Eng., 191, 106509, https://doi.org/10.1016/j.oceaneng.2019.106509.

    • Search Google Scholar
    • Export Citation
  • van der Westhuysen, A. J., 2010: Modeling of depth-induced wave breaking under finite depth wave growth conditions. J. Geophys. Res., 115, C01008, https://doi.org/10.1029/2009JC005433.

    • Search Google Scholar
    • Export Citation
  • Wei, K., Z. Shen, Z. Ti, and S. Qin, 2021: Trivariate joint probability model of typhoon-induced wind, wave and their time lag based on the numerical simulation of historical typhoons. Stochastic Environ. Res. Risk Assess., 35, 325344, https://doi.org/10.1007/s00477-020-01922-w.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 30333048, https://doi.org/10.1175/MWR2831.1.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87, 97049706, https://doi.org/10.1029/JC087iC12p09704.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and X. Yu, 2021: Enhanced atmospheric wave boundary layer model for evaluation of wind stress over waters of finite depth. Prog. Oceanogr., 198, 102664, https://doi.org/10.1016/j.pocean.2021.102664.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and X. Yu, 2023: Dynamic interdependence of wind stress and sea state under action of a tropical cyclone moving from deep to shallow waters. Ocean Dyn., 73, 639661, https://doi.org/10.1007/s10236-023-01574-8.

    • Search Google Scholar
    • Export Citation
  • Yang, J., and Coauthors, 2019: A comparative study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)—Their impacts on coastal inundation in Macau. J. Geophys. Res. Oceans, 124, 95909619, https://doi.org/10.1029/2019JC015249.

    • Search Google Scholar
    • Export Citation
  • Yang, M., S. J. Norris, T. G. Bell, and I. M. Brooks, 2019: Sea spray fluxes from the southwest coast of the United Kingdom–dependence on wind speed and wave height. Atmos. Chem. Phys., 19, 15 27115 284, https://doi.org/10.5194/acp-19-15271-2019.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Coauthors, 2021: Global reach-level 3-hourly river flood reanalysis (1980–2019). Bull. Amer. Meteor. Soc., 102, E2086E2105, https://doi.org/10.1175/BAMS-D-20-0057.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., B.-Q. Deng, and L. Shen, 2018: Direct numerical simulation of wind turbulence over breaking waves. J. Fluid Mech., 850, 120155, https://doi.org/10.1017/jfm.2018.466.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and L. A. Verhagen, 1996: The growth of fetch limited waves in water of finite depth. Part 2. Spectral evolution. Coastal Eng., 29, 7999, https://doi.org/10.1016/S0378-3839(96)00007-5.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z.-K., C.-X. Liu, Q. Li, G.-F. Dai, Q.-T. Song, and W.-H. Lv, 2015: Typhoon air-sea drag coefficient in coastal regions. J. Geophys. Res. Oceans, 120, 716727, https://doi.org/10.1002/2014JC010283.

    • Search Google Scholar
    • Export Citation
  • Zijlema, M., G. P. Van Vledder, and L. H. Holthuijsen, 2012: Bottom friction and wind drag for wave models. Coastal Eng., 65, 1926, https://doi.org/10.1016/j.coastaleng.2012.03.002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3042 2749 81
Full Text Views 868 751 588
PDF Downloads 344 251 55