Inertial Effect and Its Dependency on the Topographic Geometries in Barotropic Channel Models under the Weakly Nonlinear Regime

Takuro Matsuta aFaculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan

Search for other papers by Takuro Matsuta in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6155-6120
and
Humio Mitsudera bPan-Okhotsk Research Center, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

Search for other papers by Humio Mitsudera in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent studies have shown that the sensitivity of the circumpolar transport of channels to the westerlies is controlled by wind-driven gyre circulations. Although the form stress associated with the gyres has been shown to be controlled by eddies, bottom friction, and topographic width, the role of inertial effects has not been fully understood. In this study, we conduct a series of sensitivity analyses using the barotropic model with and without the advection term (hereinafter, the model without the advection term is denoted as linear model). Experiments showed that the sensitivity of the circumpolar transport decreased under the westerly winds compared to the linear model, while it increased under the easterly winds. We show that the inertial effect of western boundary currents generates anomalous anticyclonic circulations over the topography, producing the westward topographic form stress anomalies regardless of the wind directions. In addition, we discuss the sensitivity of the inertial effect mechanism to topographic height, width, and geometries. The inertial effect mechanism is robust as long as the gyre circulations dominate while its relative importance changes. We also found that the dynamics of the barotropic channel strongly depend on the geometries of geostrophic contours f/h. Therefore, we conclude that the dynamics of barotropic channel models might be interpreted with caution to understand the dynamics of the Southern Ocean.

Significance Statement

Previous studies have studied baroclinic and barotropic channel models as a benchmark of the Southern Ocean, but the nonlinear dynamics of channels have not been fully understood. In this paper, we show that the inertial effect by the mean flow works to decrease the sensitivity to the westerly winds in the barotropic channel models using numerical experiments. We also show that the inertial effect is robust as long as gyre circulations exist, while its relative importance differs.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takuro Matsuta, matsuta@ees.hokudai.ac.jp

Abstract

Recent studies have shown that the sensitivity of the circumpolar transport of channels to the westerlies is controlled by wind-driven gyre circulations. Although the form stress associated with the gyres has been shown to be controlled by eddies, bottom friction, and topographic width, the role of inertial effects has not been fully understood. In this study, we conduct a series of sensitivity analyses using the barotropic model with and without the advection term (hereinafter, the model without the advection term is denoted as linear model). Experiments showed that the sensitivity of the circumpolar transport decreased under the westerly winds compared to the linear model, while it increased under the easterly winds. We show that the inertial effect of western boundary currents generates anomalous anticyclonic circulations over the topography, producing the westward topographic form stress anomalies regardless of the wind directions. In addition, we discuss the sensitivity of the inertial effect mechanism to topographic height, width, and geometries. The inertial effect mechanism is robust as long as the gyre circulations dominate while its relative importance changes. We also found that the dynamics of the barotropic channel strongly depend on the geometries of geostrophic contours f/h. Therefore, we conclude that the dynamics of barotropic channel models might be interpreted with caution to understand the dynamics of the Southern Ocean.

Significance Statement

Previous studies have studied baroclinic and barotropic channel models as a benchmark of the Southern Ocean, but the nonlinear dynamics of channels have not been fully understood. In this paper, we show that the inertial effect by the mean flow works to decrease the sensitivity to the westerly winds in the barotropic channel models using numerical experiments. We also show that the inertial effect is robust as long as gyre circulations exist, while its relative importance differs.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takuro Matsuta, matsuta@ees.hokudai.ac.jp
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, https://doi.org/10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, https://doi.org/10.1175/JPO-D-11-023.1.

    • Search Google Scholar
    • Export Citation
  • Bai, Y., Y. Wang, and A. L. Stewart, 2021: Does topographic form stress impede prograde ocean currents? J. Phys. Oceanogr., 51, 26172638, https://doi.org/10.1175/JPO-D-20-0189.1.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and A. F. Thompson, 2014: Configuration of a Southern Ocean storm track. J. Phys. Oceanogr., 44, 30723078, https://doi.org/10.1175/JPO-D-14-0062.1.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., 2008: An energy-constrained parameterization of eddy buoyancy flux. J. Phys. Oceanogr., 38, 18071819, https://doi.org/10.1175/2007JPO3812.1.

    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., 2018: A barotropic model of eddy saturation. J. Phys. Oceanogr., 48, 397411, https://doi.org/10.1175/JPO-D-17-0182.1.

    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., and W. R. Young, 2017: Beta-plane turbulence above monoscale topography. J. Fluid Mech., 827, 415447, https://doi.org/10.1017/jfm.2017.482.

    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., and A. M. C. Hogg, 2019: Eddy saturation of the Southern Ocean: A baroclinic versus barotropic perspective. Geophys. Res. Lett., 46, 12 20212 212, https://doi.org/10.1029/2019GL084117.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., K. L. Tracey, D. R. Watts, M. P. Chidichimo, and T. K. Chereskin, 2016: Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophys. Res. Lett., 43, 11 76011 767, https://doi.org/10.1002/2016GL070319.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and R. J. Greatbatch, 1999: Evolution of mean-flow Fofonoff gyres in barotropic quasigeostrophic turbulence. J. Phys. Oceanogr., 29, 18321852, https://doi.org/10.1175/1520-0485(1999)029<1832:EOMFFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., and P. R. Gent, 2011: The effects of the eddy-induced advection coefficient in a coarse-resolution coupled climate model. Ocean Modell., 39, 135145, https://doi.org/10.1016/j.ocemod.2011.02.005.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, https://doi.org/10.1175/2010JPO4353.1.

    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., 2020: Steady flow in a frictionless homogenous ocean. J. Mar. Res., 78, 219226. https://elischolar.library.yale.edu/.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and G. J. Marshall, 2020: The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdiscip. Rev.: Climate Change, 11, e652, https://doi.org/10.1002/wcc.652.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 49924998, https://doi.org/10.1175/JCLI-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and R. W. Hallberg, 2000: On the relationship of the Circumpolar Current to Southern Hemisphere winds in coarse-resolution ocean models. J. Phys. Oceanogr., 30, 20132034, https://doi.org/10.1175/1520-0485(2000)030<2013:OTROTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., 2010: An Antarctic Circumpolar Current driven by surface buoyancy forcing. Geophys. Res. Lett., 37, L23601, https://doi.org/10.1029/2010GL044777.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, https://doi.org/10.1029/2004JC002753.

    • Search Google Scholar
    • Export Citation
  • Jackson, L., C. W. Hughes, and R. G. Williams, 2006: Topographic control of basin and channel flows: The role of bottom pressure torques and friction. J. Phys. Oceanogr., 36, 17861805, https://doi.org/10.1175/JPO2936.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, https://doi.org/10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Johnson, J. A., and R. B. Hill, 1975: A three-dimensional model of the Southern Ocean with bottom topography. Deep-Sea Res. Oceanogr. Abstr., 22, 745751, https://doi.org/10.1016/0011-7471(75)90079-0.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., and X. Capet, 2020: Connecting flow-topography interactions, vorticity balance, baroclinic instability and transport in the Southern Ocean: The case of an idealized storm track. Ocean Sci., 16, 12071223, https://doi.org/10.5194/os-16-1207-2020.

    • Search Google Scholar
    • Export Citation
  • Krupitsky, A., and M. A. Cane, 1994: On topographic pressure drag in a zonal channel. J. Mar. Res., 52, 123, https://doi.org/10.1357/0022240943076740.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and P. E. Isachsen, 2010: The linear models of the ACC. Prog. Oceanogr., 84, 139157, https://doi.org/10.1016/j.pocean.2009.11.002.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., M. H. P. Ambaum, J. R. Maddison, D. R. Munday, and L. Novak, 2017: Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophys. Res. Lett., 44, 286292, https://doi.org/10.1002/2016GL071702.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Masich, J., T. K. Chereskin, and M. R. Mazloff, 2015: Topographic form stress in the Southern Ocean State Estimate. J. Geophys. Res. Oceans, 120, 79197933, https://doi.org/10.1002/2015JC011143.

    • Search Google Scholar
    • Export Citation
  • Matsuta, T., and Y. Masumoto, 2023: Energetics of the Antarctic Circumpolar Current. Part I: The Lorenz energy cycle and the vertical energy redistribution. J. Phys. Oceanogr., 53, 14671484, https://doi.org/10.1175/JPO-D-22-0133.1.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 40, 880899, https://doi.org/10.1175/2009JPO4236.1.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., 1976: The interaction of zonal currents with topography with applications to the Southern Ocean. Deep-Sea Res. Oceanogr. Abstr., 23, 413427, https://doi.org/10.1016/0011-7471(76)90838-X.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, https://doi.org/10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. Naveira Garabato, A. M. C. Hogg, and R. Farneti, 2012: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110, https://doi.org/10.1175/2011JCLI4204.1.

    • Search Google Scholar
    • Export Citation
  • Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation of equilibrated circumpolar currents. J. Phys. Oceanogr., 43, 507532, https://doi.org/10.1175/JPO-D-12-095.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Search Google Scholar
    • Export Citation
  • Nadeau, L.-P., and R. Ferrari, 2015: The role of closed gyres in setting the zonal transport of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 45, 14911509, https://doi.org/10.1175/JPO-D-14-0173.1.

    • Search Google Scholar
    • Export Citation
  • Narayanan, S., and I. Webster, 1987: Coastally trapped waves in the presence of a barotropic shelf edge jet. J. Geophys. Res., 92, 94949502, https://doi.org/10.1029/JC092iC09p09494.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., and E. P. Chassignet, 1998: Emergence of inertial gyres in a two-layer quasigeostrophic ocean model. J. Phys. Oceanogr., 28, 461484, https://doi.org/10.1175/1520-0485(1998)028<0461:EOIGIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Patmore, R. D., P. R. Holland, D. R. Munday, A. C. N. Garabato, D. P. Stevens, and M. P. Meredith, 2019: Topographic control of Southern Ocean gyres and the Antarctic Circumpolar Current: A barotropic perspective. J. Phys. Oceanogr., 49, 32213244, https://doi.org/10.1175/JPO-D-19-0083.1.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp.

  • Spence, P., J. C. Fyfe, A. Montenegro, and A. J. Weaver, 2010: Southern Ocean response to strengthening winds in an eddy-permitting global climate model. J. Climate, 23, 53325343, https://doi.org/10.1175/2010JCLI3098.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. M. C. Hogg, 2017: Reshaping the Antarctic Circumpolar Current via Antarctic Bottom Water export. J. Phys. Oceanogr., 47, 25772601, https://doi.org/10.1175/JPO-D-17-0007.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., J. C. McWilliams, and A. Solodoch, 2021: On the role of bottom pressure torques in wind-driven gyres. J. Phys. Oceanogr., 51, 14411464, https://doi.org/10.1175/JPO-D-20-0147.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., N. K. Neumann, and A. Solodoch, 2023: “Eddy” saturation of the Antarctic Circumpolar Current by standing waves. J. Phys. Oceanogr., 53, 11611181, https://doi.org/10.1175/JPO-D-22-0154.1.

    • Search Google Scholar
    • Export Citation
  • Straub, D. N., 1993: On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 23, 776782, https://doi.org/10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • Tamsitt, V., and Coauthors, 2017: Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun., 8, 172, https://doi.org/10.1038/s41467-017-00197-0.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, https://doi.org/10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and J. C. McWilliams, 1990: Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current. J. Phys. Oceanogr., 20, 321343, https://doi.org/10.1175/1520-0485(1990)020<0321:TIOWDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uchimoto, K., and A. Kubokawa, 2005: Form drag caused by topographically forced waves in a barotropic β channel: Effect of higher mode resonance. J. Oceanogr., 61, 197211, https://doi.org/10.1007/s10872-005-0032-4.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 946 pp.

  • Veronis, G., 1966: Wind-driven ocean circulation—Part 1. Linear theory and perturbation analysis. Deep-Sea Res. Oceanogr. Abstr., 13, 1729, https://doi.org/10.1016/0011-7471(66)90003-9.

    • Search Google Scholar
    • Export Citation
  • Viglione, G. A., and A. F. Thompson, 2016: Lagrangian pathways of upwelling in the Southern Ocean. J. Geophys. Res. Oceans, 121, 62956309, https://doi.org/10.1002/2016JC011773.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and G. K. Vallis, 1994: Emergence of Fofonoff states in inviscid and viscous ocean circulation models. J. Mar. Res., 52, 83127, https://doi.org/10.1357/0022240943076777.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and R. X. Huang, 1995: A linear homogeneous model of wind-driven circulation in a β-plane channel. J. Phys. Oceanogr., 25, 587603, https://doi.org/10.1175/1520-0485(1995)025<0587:ALHMOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolff, J.-O., E. Maier-Reimer, and D. J. Olbers, 1991: Wind-driven flow over topography in a zonal β-plane channel: A quasi-geostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 21, 236264, https://doi.org/10.1175/1520-0485(1991)021<0236:WDFOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., A. F. Thompson, A. Lazar, and K. J. Richards, 2017: ACC meanders, energy transfer, and mixed barotropic–baroclinic instability. J. Phys. Oceanogr., 47, 12911305, https://doi.org/10.1175/JPO-D-16-0160.1.

    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., G. R. Flierl, and R. Ferrari, 2019: Role of residual overturning for the sensitivity of Southern Ocean isopycnal slopes to changes in wind forcing. J. Phys. Oceanogr., 49, 28672881, https://doi.org/10.1175/JPO-D-19-0072.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and M. Nikurashin, 2020: Small-scale topographic form stress and local dynamics of the Southern Ocean. J. Geophys. Res. Oceans, 125, e2019JC015420, https://doi.org/10.1029/2019JC015420.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., M. Nikurashin, B. Peña-Molino, S. R. Rintoul, and E. Doddridge, 2022: A theory of standing meanders of the Antarctic Circumpolar Current and their response to wind. J. Phys. Oceanogr., 53, 235251, https://doi.org/10.1175/JPO-D-22-0086.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 372 372 111
Full Text Views 174 174 46
PDF Downloads 154 154 60