Sensitivities of the West Greenland Current to Greenland Ice Sheet Meltwater in a Mesoscale Ocean/Sea Ice Model

Theresa J. Morrison aScripps Institution of Oceanography, La Jolla, California
bPrinceton University, Princeton, New Jersey

Search for other papers by Theresa J. Morrison in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7734-9444
,
Julie L. McClean aScripps Institution of Oceanography, La Jolla, California

Search for other papers by Julie L. McClean in
Current site
Google Scholar
PubMed
Close
,
Sarah T. Gille aScripps Institution of Oceanography, La Jolla, California

Search for other papers by Sarah T. Gille in
Current site
Google Scholar
PubMed
Close
,
Mathew E. Maltrud cLos Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Mathew E. Maltrud in
Current site
Google Scholar
PubMed
Close
,
Detelina P. Ivanova dClimformatics, Fremont, California

Search for other papers by Detelina P. Ivanova in
Current site
Google Scholar
PubMed
Close
, and
Anthony P. Craig eAnthony Craig LLC, Seattle, Washington

Search for other papers by Anthony P. Craig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Meltwater from the Greenland Ice Sheet can alter the continental shelf/slope circulation and cross-shelf freshwater fluxes and limit deep convection in adjacent basins through surface freshening. We explore the impacts on the West Greenland Current and eastern Labrador Sea with different vertical distributions of the meltwater forcing. In this study, we present the results from global coupled ocean/sea ice simulations, forced with atmospheric reanalysis, that are mesoscale eddy-active (∼2–3-km horizontal spacing) and eddy-permitting (∼6–7-km horizontal spacing) in the study region. We compare the West Greenland Current in mesoscale eddy-active and eddy-permitting without meltwater to highlight the role of small-scale features. The mesoscale eddy-active configuration is then used to assess the change in the eastern Labrador Sea when meltwater is added to the surface or vertically distributed to account for mixing within fjords. In both simulations with meltwater, the West Greenland and West Greenland Coastal Currents are faster than in the simulation with no meltwater; their mean surface speeds are the highest in the vertical distribution case. In the latter case, there is enhanced baroclinic conversion at the shelf break compared to the simulation with no meltwater. When meltwater is vertically distributed, there is an increase in baroclinic conversion at the shelf break associated with increased eddy kinetic energy. In addition, in the eastern Labrador Sea, the salinity is lower and the meltwater volume is greater when meltwater is vertically distributed. Therefore, the West Greenland Current is sensitive to how meltwater is added to the ocean with implications for the freshening of the Labrador Sea.

Significance Statement

Our goal is to understand how the flux of freshwater across the West Greenland continental slope into the Labrador Sea is modified by meltwater from the Greenland Ice Sheet. We compare the simulations of the ocean that capture key dynamics along the West Greenland continental slope that have no meltwater, meltwater added to the ocean surface, and meltwater distributed vertically to represent the mixing within fjords. When meltwater is added, the currents along the continental slope are faster, with the greatest increase when meltwater is vertically distributed. In that case, there is enhanced freshening of the Labrador Sea because modified density gradients generate more eddies. Proper representation of the vertical structure of meltwater is important for projecting the impact of freshwater on the subpolar North Atlantic.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theresa J. Morrison, t4morris@ucsd.edu

Abstract

Meltwater from the Greenland Ice Sheet can alter the continental shelf/slope circulation and cross-shelf freshwater fluxes and limit deep convection in adjacent basins through surface freshening. We explore the impacts on the West Greenland Current and eastern Labrador Sea with different vertical distributions of the meltwater forcing. In this study, we present the results from global coupled ocean/sea ice simulations, forced with atmospheric reanalysis, that are mesoscale eddy-active (∼2–3-km horizontal spacing) and eddy-permitting (∼6–7-km horizontal spacing) in the study region. We compare the West Greenland Current in mesoscale eddy-active and eddy-permitting without meltwater to highlight the role of small-scale features. The mesoscale eddy-active configuration is then used to assess the change in the eastern Labrador Sea when meltwater is added to the surface or vertically distributed to account for mixing within fjords. In both simulations with meltwater, the West Greenland and West Greenland Coastal Currents are faster than in the simulation with no meltwater; their mean surface speeds are the highest in the vertical distribution case. In the latter case, there is enhanced baroclinic conversion at the shelf break compared to the simulation with no meltwater. When meltwater is vertically distributed, there is an increase in baroclinic conversion at the shelf break associated with increased eddy kinetic energy. In addition, in the eastern Labrador Sea, the salinity is lower and the meltwater volume is greater when meltwater is vertically distributed. Therefore, the West Greenland Current is sensitive to how meltwater is added to the ocean with implications for the freshening of the Labrador Sea.

Significance Statement

Our goal is to understand how the flux of freshwater across the West Greenland continental slope into the Labrador Sea is modified by meltwater from the Greenland Ice Sheet. We compare the simulations of the ocean that capture key dynamics along the West Greenland continental slope that have no meltwater, meltwater added to the ocean surface, and meltwater distributed vertically to represent the mixing within fjords. When meltwater is added, the currents along the continental slope are faster, with the greatest increase when meltwater is vertically distributed. In that case, there is enhanced freshening of the Labrador Sea because modified density gradients generate more eddies. Proper representation of the vertical structure of meltwater is important for projecting the impact of freshwater on the subpolar North Atlantic.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Theresa J. Morrison, t4morris@ucsd.edu

Supplementary Materials

    • Supplemental Materials (PDF 23.173 MB)
Save
  • Bamber, J. L., A. J. Tedstone, M. D. King, I. M. Howat, E. M. Enderlin, M. R. van den Broeke, and B. Noel, 2018: Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results. J. Geophys. Res. Oceans, 123, 18271837, https://doi.org/10.1002/2017JC013605.

    • Search Google Scholar
    • Export Citation
  • Beaird, N., F. Straneo, and W. Jenkins, 2015: Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophys. Res. Lett., 42, 77057713, https://doi.org/10.1002/2015GL065003.

    • Search Google Scholar
    • Export Citation
  • Beaird, N., F. Straneo, and W. Jenkins, 2017: Characteristics of meltwater export from Jakobshavn Isbræ and Ilulissat Icefjord. Ann. Glaciol., 58, 107117, https://doi.org/10.1017/aog.2017.19.

    • Search Google Scholar
    • Export Citation
  • Beaird, N. L., F. Straneo, and W. Jenkins, 2018: Export of strongly diluted Greenland meltwater from a major glacial fjord. Geophys. Res. Lett., 45, 41634170, https://doi.org/10.1029/2018GL077000.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., C. W. Böning, B. Brügge, and D. Stammer, 1994: On the generation and role of eddy variability in the central North Atlantic Ocean. J. Geophys. Res., 99, 20 38120 391, https://doi.org/10.1029/94JC01654.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., and R. G. Budich, 1992: Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J. Phys. Oceanogr., 22, 361381, https://doi.org/10.1175/1520-0485(1992)022<0361:EDIAPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., E. Behrens, A. Biastoch, K. Getzlaff, and J. L. Bamber, 2016: Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci., 9, 523527, https://doi.org/10.1038/ngeo2740.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. Pedlosky, and R. S. Pickart, 2008: Eddy formation near the west coast of Greenland. J. Phys. Oceanogr., 38, 19922002, https://doi.org/10.1175/2008JPO3669.1.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., F. A. Schott, A. Funk, and C. S. Martins, 2004: Seasonal to interannual variability of the eddy field in the Labrador Sea from satellite altimetry. J. Geophys. Res., 109, C02028, https://doi.org/10.1029/2002JC001551.

    • Search Google Scholar
    • Export Citation
  • Carroll, D., and Coauthors, 2016: The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett., 43, 97399748, https://doi.org/10.1002/2016GL070170.

    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., and Coauthors, 2019: Controls on the transport of meltwater from the southern Greenland ice sheet in the Labrador Sea. J. Geophys. Res. Oceans, 124, 35513560, https://doi.org/10.1029/2019JC015159.

    • Search Google Scholar
    • Export Citation
  • Chafik, L., and T. Rossby, 2019: Volume, heat, and freshwater divergences in the subpolar North Atlantic suggest the Nordic Seas as key to the state of the meridional overturning circulation. Geophys. Res. Lett., 46, 47994808, https://doi.org/10.1029/2019GL082110.

    • Search Google Scholar
    • Export Citation
  • Chanut, J., B. Barnier, W. Large, L. Debreu, T. Penduff, J. M. Molines, and P. Mathiot, 2008: Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. J. Phys. Oceanogr., 38, 16171643, https://doi.org/10.1175/2008JPO3485.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., A. S. Bower, and H. H. Furey, 2014: Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification. J. Phys. Oceanogr., 44, 427444, https://doi.org/10.1175/JPO-D-13-070.1.

    • Search Google Scholar
    • Export Citation
  • Desbruyères, D. G., H. Mercier, G. Maze, and N. Daniault, 2019: Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic. Ocean Sci., 15, 809817, https://doi.org/10.5194/os-15-809-2019.

    • Search Google Scholar
    • Export Citation
  • Dukhovskoy, D. S., and Coauthors, 2016: Greenland freshwater pathways in the sub-Arctic seas from model experiments with passive tracers. J. Geophys. Res. Oceans, 121, 877907, https://doi.org/10.1002/2015JC011290.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface method for the Bryan-Cox-Semtner ocean model. J. Geophys. Res., 99, 79918014, https://doi.org/10.1029/93JC03455.

    • Search Google Scholar
    • Export Citation
  • Eden, C., 2007: Eddy length scales in the North Atlantic Ocean. J. Geophys. Res., 112, C06004, https://doi.org/10.1029/2006JC003901.

  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, https://doi.org/10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fine, E. C., J. L. McClean, D. P. Ivanova, A. P. Craig, A. J. Wallcraft, E. P. Chassignet, and E. C. Hunke, 2023: Arctic ice-ocean interactions in an 8-to-2 kilometer resolution global model. Ocean Modell., 184, 102228, https://doi.org/10.1016/j.ocemod.2023.102228.

    • Search Google Scholar
    • Export Citation
  • Foukal, N. P., R. Gelderloos, and R. S. Pickart, 2020: A continuous pathway for fresh water along the East Greenland Shelf. Sci. Adv., 6, eabc4254, https://doi.org/10.1126/sciadv.abc4254.

    • Search Google Scholar
    • Export Citation
  • Funk, A., P. Brandt, and T. Fischer, 2009: Eddy diffusivities estimated from observations in the Labrador Sea. J. Geophys. Res., 114, C04001, https://doi.org/10.1029/2008JC005098.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. Mcwilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gillard, L. C., X. Hu, P. G. Myers, and J. L. Bamber, 2016: Meltwater pathways from marine terminating glaciers of the Greenland ice sheet. Geophys. Res. Lett., 43, 10 87310 882, https://doi.org/10.1002/2016GL070969.

    • Search Google Scholar
    • Export Citation
  • Gou, R., C. Feucher, C. Pennelly, and P. G. Myers, 2021: Seasonal cycle of the coastal West Greenland current system between Cape Farewell and Cape Desolation from a very high-resolution numerical model. J. Geophys. Res. Oceans, 126, e2020JC017017, https://doi.org/10.1029/2020JC017017.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, https://doi.org/10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Håvik, L., K. Våge, R. S. Pickart, B. Harden, W.-J. Appen, S. Jónsson, and S. Østerhus, 2017: Structure and variability of the Shelfbreak East Greenland current north of Denmark Strait. J. Phys. Oceanogr., 47, 26312646, https://doi.org/10.1175/JPO-D-17-0062.1.

    • Search Google Scholar
    • Export Citation
  • Hecht, M., and Coauthors, 2019: E3SMv0-HiLAT: A modified climate system model targeted for the study of high-latitude processes. J. Adv. Model. Earth Syst., 11, 28142843, https://doi.org/10.1029/2018MS001524.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., S. Bacon, S. A. Cunningham, S. F. Gary, J. Karstensen, B. A. King, F. Li, and E. L. McDonagh, 2018: Subpolar North Atlantic overturning and gyre-scale circulation in the summers of 2014 and 2016. J. Geophys. Res. Oceans, 123, 45384559, https://doi.org/10.1029/2018JC013841.

    • Search Google Scholar
    • Export Citation
  • Hu, S., J. Sprintall, C. Guan, M. J. McPhaden, F. Wang, D. Hu, and W. Cai, 2020: Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv., 6, eaax7727, https://doi.org/10.1126/sciadv.aax7727.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 4.1. Doc. LA-CC-06-012, 76 pp., https://csdms.colorado.edu/w/images/CICE_documentation_and_software_user's_manual.pdf.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., M. A. Spall, and R. S. Pickart, 2004: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34, 19671983, https://doi.org/10.1175/1520-0485(2004)034<1967:BCEATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Laurindo, L. C., A. J. Mariano, and R. Lumpkin, 2017: An improved near-surface velocity climatology for the global ocean from drifter observations. Deep-Sea Res. I, 124, 7392, https://doi.org/10.1016/j.dsr.2017.04.009.

    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75176, https://doi.org/10.1016/j.pocean.2003.08.013.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Search Google Scholar
    • Export Citation
  • Luo, H., R. M. Castelao, A. K. Rennermalm, M. Tedesco, A. Bracco, P. L. Yager, and T. L. Mote, 2016: Oceanic transport of surface meltwater from the southern Greenland Ice Sheet. Nat. Geosci., 9, 528532, https://doi.org/10.1038/ngeo2708.

    • Search Google Scholar
    • Export Citation
  • Majumder, S., R. M. Castelao, and C. M. Amos, 2021: Freshwater variability and transport in the Labrador Sea from in situ and satellite observations. J. Geophys. Res. Oceans, 126, e2020JC016751, https://doi.org/10.1029/2020JC016751.

    • Search Google Scholar
    • Export Citation
  • Mana, P. P., and L. Zanna, 2014: Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Modell., 79, 120, https://doi.org/10.1016/j.ocemod.2014.04.002.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37 (1), 164, https://doi.org/10.1029/98RG02739.

    • Search Google Scholar
    • Export Citation
  • Martínez-Moreno, J., A. M. Hogg, M. H. England, N. C. Constantinou, A. E. Kiss, and A. K. Morrison, 2021: Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Climate Change, 11, 397403, https://doi.org/10.1038/s41558-021-01006-9.

    • Search Google Scholar
    • Export Citation
  • Moon, T., D. A. Sutherland, D. Carroll, D. Felikson, L. Kehrl, and F. Straneo, 2018: Subsurface iceberg melt key to Greenland fjord freshwater budget. Nat. Geosci., 11, 4954, https://doi.org/10.1038/s41561-017-0018-z.

    • Search Google Scholar
    • Export Citation
  • Morlighem, M., and Coauthors, 2017: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44, 11 05111 061, https://doi.org/10.1002/2017GL074954.

    • Search Google Scholar
    • Export Citation
  • Noël, B., and Coauthors, 2018: Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 1: Greenland (1958–2016). Cryosphere, 12, 811831, https://doi.org/10.5194/tc-12-811-2018.

    • Search Google Scholar
    • Export Citation
  • Pacini, A., and R. S. Pickart, 2022: Meanders of the West Greenland current near Cape Farewell. Deep-Sea Res. I, 179, 103664, https://doi.org/10.1016/j.dsr.2021.103664.

    • Search Google Scholar
    • Export Citation
  • Pacini, A., and Coauthors, 2020: Mean conditions and seasonality of the West Greenland boundary current system near Cape Farewell. J. Phys. Oceanogr., 50, 28492871, https://doi.org/10.1175/JPO-D-20-0086.1.

    • Search Google Scholar
    • Export Citation
  • Peng, Q., S.-P. Xie, D. Wang, R. X. Huang, G. Chen, Y. Shu, J.-R. Shi, and W. Liu, 2022: Surface warming–induced global acceleration of upper ocean currents. Sci. Adv., 8, eabj8394, https://doi.org/10.1126/sciadv.abj8394.

    • Search Google Scholar
    • Export Citation
  • Pennelly, C., X. Hu, and P. G. Myers, 2019: Cross-isobath freshwater exchange within the North Atlantic subpolar gyre. J. Geophys. Res. Oceans, 124, 68316853, https://doi.org/10.1029/2019JC015144.

    • Search Google Scholar
    • Export Citation
  • Petit, T., M. S. Lozier, S. A. Josey, and S. A. Cunningham, 2020: Atlantic deep water formation occurs primarily in the Iceland Basin and Irminger Sea by local buoyancy forcing. Geophys. Res. Lett., 47, e2020GL091028, https://doi.org/10.1029/2020GL091028.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428457, https://doi.org/10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rieck, J. K., C. W. Böning, and K. Getzlaff, 2019: The nature of eddy kinetic energy in the Labrador Sea: Different types of mesoscale eddies, their temporal variability, and impact on deep convection. J. Phys. Oceanogr., 49, 20752094, https://doi.org/10.1175/JPO-D-18-0243.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2020: Sensitivity of the Atlantic meridional overturning circulation to model resolution in CMIP6 HighResMIP simulations and implications for future changes. J. Adv. Model. Earth Syst., 12, e2019MS002014, https://doi.org/10.1029/2019MS002014.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., C. Flagg, L. Chafik, B. Harden, and H. Søiland, 2018: A direct estimate of volume, heat, and freshwater exchange across the Greenland-Iceland-Faroe-Scotland Ridge. J. Geophys. Res. Oceans, 123, 71397153, https://doi.org/10.1029/2018JC014250.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., F. Dupont, D. Yang, P. G. Myers, I. Yashayaev, and G. C. Smith, 2014: Role of resolved and parameterized eddies in the Labrador Sea balance of heat and buoyancy. J. Phys. Oceanogr., 44, 30083032, https://doi.org/10.1175/JPO-D-14-0041.1.

    • Search Google Scholar
    • Export Citation
  • Schauer, U., and M. Losch, 2019: “Freshwater” in the ocean is not a useful parameter in climate research. J. Phys. Oceanogr., 49, 23092321, https://doi.org/10.1175/JPO-D-19-0102.1.

    • Search Google Scholar
    • Export Citation
  • Schulze Chretien, L. M., and E. Frajka-Williams, 2018: Wind-driven transport of fresh shelf water into the upper 30 m of the Labrador Sea. Ocean Sci., 14, 12471264, https://doi.org/10.5194/os-14-1247-2018.

    • Search Google Scholar
    • Export Citation
  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087, https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2019: Acceleration and overturning of the Antarctic slope current by winds, eddies, and tides. J. Phys. Oceanogr., 49, 20432074, https://doi.org/10.1175/JPO-D-18-0221.1.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., and C. Cenedese, 2015: The dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Mar. Sci., 7, 89112, https://doi.org/10.1146/annurev-marine-010213-135133.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., and R. S. Pickart, 2008: The East Greenland coastal current: Structure, variability, and forcing. Prog. Oceanogr., 78, 5877, https://doi.org/10.1016/j.pocean.2007.09.006.

    • Search Google Scholar
    • Export Citation
  • Trodahl, M., and P. E. Isachsen, 2018: Topographic influence on baroclinic instability and the mesoscale eddy field in the northern North Atlantic Ocean and the Nordic Seas. J. Phys. Oceanogr., 48, 25932607, https://doi.org/10.1175/JPO-D-17-0220.1.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Search Google Scholar
    • Export Citation
  • Weatherall, P., and Coauthors, 2015: A new digital bathymetric model of the world’s oceans. Earth Space Sci., 2, 331345, https://doi.org/10.1002/2015EA000107.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and Coauthors, 2019: Stability of the Atlantic meridional overturning circulation: A review and synthesis. J. Geophys. Res. Oceans, 124, 53365375, https://doi.org/10.1029/2019JC015083.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2020: Is the ocean speeding up? Ocean surface energy trends. J. Phys. Oceanogr., 50, 32053217, https://doi.org/10.1175/JPO-D-20-0082.1.

    • Search Google Scholar
    • Export Citation
  • Yeager, S., and Coauthors, 2021: An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation. Sci. Adv., 7, eabh3592, https://doi.org/10.1126/sciadv.abh3592.

    • Search Google Scholar
    • Export Citation
  • Yin, J., R. J. Stouffer, M. J. Spelman, and S. M. Griffies, 2010: Evaluating the uncertainty induced by the virtual salt flux assumption in climate simulations and future projections. J. Climate, 23, 8096, https://doi.org/10.1175/2009JCLI3084.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., Y. Gao, and O. H. Otterå, 2016: The sensitivity of the Atlantic meridional overturning circulation to enhanced freshwater discharge along the entire, eastern and western coast of Greenland. Climate Dyn., 46, 13511369, https://doi.org/10.1007/s00382-015-2651-9.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., E. Demirov, Y. Zhang, and A. Polomska-Harlick, 2014: Model simulations of mesoscale eddies and deep convection in the Labrador Sea. Adv. Atmos. Sci., 31, 743754, https://doi.org/10.1007/s00376-013-3107-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 786 786 124
Full Text Views 264 264 19
PDF Downloads 303 303 23