Mesoscale Ocean–Atmosphere Coupling Effects on the North Pacific Subtropical Mode Water

Jingjie Yu aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Jingjie Yu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7620-485X
,
Bolan Gan aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Bolan Gan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7620-485X
,
Haiyuan Yang aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Haiyuan Yang in
Current site
Google Scholar
PubMed
Close
,
Zhaohui Chen aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Zhaohui Chen in
Current site
Google Scholar
PubMed
Close
,
Lixiao Xu aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Lixiao Xu in
Current site
Google Scholar
PubMed
Close
, and
Lixin Wu aFrontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Subtropical mode water (STMW) is a thick layer of water mass characterized by homogeneous properties within the main pycnocline, important for oceanic oxygen utilization, carbon sequestration, and climate regulation. North Pacific STMW is formed in the Kuroshio Extension region, where vigorous mesoscale eddies strongly interact with the atmosphere. However, it remains unknown how such mesoscale ocean–atmosphere (MOA) coupling affects the STMW formation. By conducting twin simulations with an eddy-resolving global climate model, we find that approximately 25% more STMW is formed with the MOA coupling than without it. This is attributable to a significant increase in ocean latent heat release primarily driven by higher wind speed over the STMW formation region, which is associated with the southward deflection of storm tracks in response to oceanic mesoscale imprints. Such enhanced surface latent heat loss overwhelms the stronger upper-ocean restratification induced by vertical eddy and turbulent heat transport, leading to the formation of colder and denser STMW in the presence of MOA coupling. Further investigation of a multimodel and multiresolution ensemble of global coupled models reveals that the agreement between the STMW simulation in eddy-present/rich coupled models and observations is superior to that of eddy-free ones, likely due to more realistic representation of MOA coupling. However, the ocean-alone model simulations show significant limitations in improving STMW production, even with refined model resolution. This indicates the importance of incorporating the MOA coupling into Earth system models to alleviate biases in STMW and associated climatic and biogeochemical impacts.

Significance Statement

North Pacific subtropical mode water (STMW) is a distinct pycnostad within the main thermocline located south of the Kuroshio Extension. As short-term heat and carbon silos, STMW is traditionally thought to be driven by the basin-scale atmospheric forcing. The role of air–sea interactions at mesoscales residing in the Kuroshio Extension region has been overlooked. Here, we demonstrate that the strong thermal feedback of mesoscale sea surface temperature anomalies is not negligible for the STMW formation. This is achieved by accelerating wind and consequently promoting ocean latent heat release. Our results pinpoint the significance of accounting for the role of oceanic mesoscale feedback in improving the simulation of STMW as well as its climatic and biogeochemical impacts in Earth system models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bolan Gan, gbl0203@ouc.edu.cn

Abstract

Subtropical mode water (STMW) is a thick layer of water mass characterized by homogeneous properties within the main pycnocline, important for oceanic oxygen utilization, carbon sequestration, and climate regulation. North Pacific STMW is formed in the Kuroshio Extension region, where vigorous mesoscale eddies strongly interact with the atmosphere. However, it remains unknown how such mesoscale ocean–atmosphere (MOA) coupling affects the STMW formation. By conducting twin simulations with an eddy-resolving global climate model, we find that approximately 25% more STMW is formed with the MOA coupling than without it. This is attributable to a significant increase in ocean latent heat release primarily driven by higher wind speed over the STMW formation region, which is associated with the southward deflection of storm tracks in response to oceanic mesoscale imprints. Such enhanced surface latent heat loss overwhelms the stronger upper-ocean restratification induced by vertical eddy and turbulent heat transport, leading to the formation of colder and denser STMW in the presence of MOA coupling. Further investigation of a multimodel and multiresolution ensemble of global coupled models reveals that the agreement between the STMW simulation in eddy-present/rich coupled models and observations is superior to that of eddy-free ones, likely due to more realistic representation of MOA coupling. However, the ocean-alone model simulations show significant limitations in improving STMW production, even with refined model resolution. This indicates the importance of incorporating the MOA coupling into Earth system models to alleviate biases in STMW and associated climatic and biogeochemical impacts.

Significance Statement

North Pacific subtropical mode water (STMW) is a distinct pycnostad within the main thermocline located south of the Kuroshio Extension. As short-term heat and carbon silos, STMW is traditionally thought to be driven by the basin-scale atmospheric forcing. The role of air–sea interactions at mesoscales residing in the Kuroshio Extension region has been overlooked. Here, we demonstrate that the strong thermal feedback of mesoscale sea surface temperature anomalies is not negligible for the STMW formation. This is achieved by accelerating wind and consequently promoting ocean latent heat release. Our results pinpoint the significance of accounting for the role of oceanic mesoscale feedback in improving the simulation of STMW as well as its climatic and biogeochemical impacts in Earth system models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bolan Gan, gbl0203@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.3202 MB)
Save
  • Akima, H., 1970: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach., 17, 589602, https://doi.org/10.1145/321607.321609.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122137, https://doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, P. C., and J. V. Tu, 2004: Bootstrap methods for developing predictive models. Amer. Stat., 58, 131137, https://doi.org/10.1198/0003130043277.

    • Search Google Scholar
    • Export Citation
  • Bates, N. R., A. C. Pequignet, R. J. Johnson, and N. Gruber, 2002: A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature, 420, 489493, https://doi.org/10.1038/nature01253.

    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., 1992: Formation and spreading of subtropical mode water in the North Pacific. J. Geophys. Res., 97, 11 17711 189, https://doi.org/10.1029/92JC01001.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., F. O. Bryan, and R. J. Small, 2015: Bjerknes-like compensation in the wintertime North Pacific. J. Phys. Oceanogr., 45, 13391355, https://doi.org/10.1175/JPO-D-14-0157.1.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16, 619635, https://doi.org/10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 62776291, https://doi.org/10.1175/2010JCLI3665.1.

    • Search Google Scholar
    • Export Citation
  • Byrne, D., M. Münnich, I. Frenger, and N. Gruber, 2016: Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean. Nat. Commun., 7, ncomms11867, https://doi.org/10.1038/ncomms11867.

    • Search Google Scholar
    • Export Citation
  • Carman, J. C., and J. L. McClean, 2011: Investigation of IPCC AR4 coupled climate model North Atlantic mode water formation. Ocean Modell., 40, 1434, https://doi.org/10.1016/j.ocemod.2011.07.001.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., and D. Giglio, 2016: North Pacific subtropical mode water volume decrease in 2006–09 estimated from Argo observations: Influence of surface formation and basin-scale oceanic variability. J. Climate, 29, 21772199, https://doi.org/10.1175/JCLI-D-15-0179.1.

    • Search Google Scholar
    • Export Citation
  • Cerovečki, I., M. C. Hendershott, and E. Yulaeva, 2019: Strong North Pacific subtropical mode water volume and density decrease in year 1999. J. Geophys. Res. Oceans, 124, 66176631, https://doi.org/10.1029/2019JC014956.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2020: An unprecedented set of high-resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst., 12, e2020MS002298, https://doi.org/10.1029/2020MS002298.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23 (4), 5269, https://doi.org/10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chen, L., Y. Jia, and Q. Liu, 2017: Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region. J. Oceanogr., 73, 295307, https://doi.org/10.1007/s10872-016-0403-z.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., H. Hu, X. Ren, and X.-Q. Yang, 2019: Numerical simulation of midlatitude upper-level zonal wind response to the change of North Pacific subtropical front strength. J. Geophys. Res. Atmos., 124, 48914912, https://doi.org/10.1029/2018JD029589.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., B. Gan, L. Wu, and F. Jia, 2018: Pacific-North American teleconnection and North Pacific Oscillation: Historical simulation and future projection in CMIP5 models. Climate Dyn., 50, 43794403, https://doi.org/10.1007/s00382-017-3881-9.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e160154, https://doi.org/10.1126/sciadv.1601545.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., and Coauthors, 2019: Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst., 11, 185209, https://doi.org/10.1029/2018MS001369.

    • Search Google Scholar
    • Export Citation
  • Covey, C., K. M. AchutaRao, U. Cubasch, P. Jones, S. J. Lambert, M. E. Mann, T. J. Phillips, and K. E. Taylor, 2003: An overview of results from the Coupled Model Intercomparison Project. Global Planet. Change, 37, 103133, https://doi.org/10.1016/S0921-8181(02)00193-5.

    • Search Google Scholar
    • Export Citation
  • Davis, X., L. M. Rothstein, W. K. Dewar, and D. Menemenlis, 2011: Numerical investigations of seasonal and interannual variability of North Pacific subtropical mode water and its implications for Pacific climate variability. J. Climate, 24, 26482665, https://doi.org/10.1175/2010JCLI3435.1.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, https://doi.org/10.1038/nature07080.

    • Search Google Scholar
    • Export Citation
  • Dong, T., and W. Dong, 2021: Evaluation of extreme precipitation over Asia in CMIP6 models. Climate Dyn., 57, 17511769, https://doi.org/10.1007/s00382-021-05773-1.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., and K. Hanawa, 2001: Trajectory of mesoscale eddies in the Kuroshio recirculation region. J. Oceanogr., 57, 471480, https://doi.org/10.1023/A:1021293822277.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, J., and X.-Q. Yang, 2016: Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean–atmosphere system. Climate Dyn., 47, 19892007, https://doi.org/10.1007/s00382-015-2946-x.

    • Search Google Scholar
    • Export Citation
  • Feucher, C., G. Maze, and H. Mercier, 2019: Subtropical mode water and permanent pycnocline properties in the World Ocean. J. Geophys. Res. Oceans, 124, 11391154, https://doi.org/10.1029/2018JC014526.

    • Search Google Scholar
    • Export Citation
  • Forget, G., G. Maze, M. Buckley, and J. Marshall, 2011: Estimated seasonal cycle of North Atlantic eighteen degree water volume. J. Phys. Oceanogr., 41, 269286, https://doi.org/10.1175/2010JPO4257.1.

    • Search Google Scholar
    • Export Citation
  • Foussard, A., G. Lapeyre, and R. Plougonven, 2019: Storm track response to oceanic eddies in idealized atmospheric simulations. J. Climate, 32, 445463, https://doi.org/10.1175/JCLI-D-18-0415.1.

    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, https://doi.org/10.1038/ngeo1863.

    • Search Google Scholar
    • Export Citation
  • Gan, B., T. Wang, L. Wu, J. Li, B. Qiu, H. Yang, and L. Zhang, 2023a: A mesoscale ocean–atmosphere coupled pathway for decadal variability of the Kuroshio Extension system. J. Climate, 36, 485510, https://doi.org/10.1175/JCLI-D-21-0557.1.

    • Search Google Scholar
    • Export Citation
  • Gan, B., and Coauthors, 2023b: North Atlantic subtropical mode water formation controlled by Gulf Stream fronts. Natl. Sci. Rev., 10, nwad133, https://doi.org/10.1093/nsr/nwad133.

    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev., 9, 32313296, https://doi.org/10.5194/gmd-9-3231-2016.

    • Search Google Scholar
    • Export Citation
  • Gu, D. F., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, https://doi.org/10.1126/science.275.5301.805.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R., and Coauthors, 2020: HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – Description, model computational performance and basic validation. Geosci. Model Dev., 13, 35073527, https://doi.org/10.5194/gmd-13-3507-2020.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., 1987: Interannual variations of the winter-time outcrop area of subtropical mode water in the western North Pacific Ocean. Atmos.–Ocean, 25, 358374, https://doi.org/10.1080/07055900.1987.9649280.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and J. Kamada, 2001: Variability of Core Layer Temperature (CLT) of the North Pacific subtropical mode water. Geophys. Res. Lett., 28, 22292232, https://doi.org/10.1029/2000GL011716.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler et al., Eds., International Geophysics Series, Vol. 77, Academic Press, 373–386.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hewitt, H. T., and Coauthors, 2020: Resolving and parameterising the ocean mesoscale in Earth system models. Curr. Climate Change Rep., 6, 137152, https://doi.org/10.1007/s40641-020-00164-w.

    • Search Google Scholar
    • Export Citation
  • Hu, H., Y. Zhao, N. Zhang, H. Bai, and F. Chen, 2021: Local and remote forcing effects of oceanic eddies in the subtropical front zone on the mid-latitude atmosphere in winter. Climate Dyn., 57, 34473464, https://doi.org/10.1007/s00382-021-05877-8.

    • Search Google Scholar
    • Export Citation
  • Hu, H., W. Chen, X.-Q. Yang, Y. Zhao, H. Bai, and K. Mao, 2022: The mode-water-induced interannual variation of the North Pacific subtropical countercurrent and the corresponding winter atmospheric anomalies. Geophys. Res. Lett., 49, e2022GL100968, https://doi.org/10.1029/2022GL100968.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos Sea Ice Model user’s manual, version 4. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 72 pp.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jing, W., and Y. Luo, 2021: Volume budget of subantarctic mode water in the Southern Ocean from an ocean general circulation model. J. Geophys. Res. Oceans, 126, e2020JC017040, https://doi.org/10.1029/2020JC017040.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., and Coauthors, 2020: Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Sci. Adv., 6, eaba7880, https://doi.org/10.1126/sciadv.aba7880.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667, https://doi.org/10.1175/2010JCLI3346.1.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Search Google Scholar
    • Export Citation
  • Kouketsu, S., H. Tomita, E. Oka, S. Hosoda, T. Kobayashi, and K. Sato, 2012: The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. J. Oceanogr., 68, 6377, https://doi.org/10.1007/s10872-011-0049-9.

    • Search Google Scholar
    • Export Citation
  • Krémeur, A.-S., M. Levy, O. Aumont, and G. Reverdin, 2009: Impact of the subtropical mode water biogeochemical properties on primary production in the North Atlantic: New insights from an idealized model study. J. Geophys. Res., 114, C07019, https://doi.org/10.1029/2008JC005161.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Li, F., H. Sang, and Z. Jing, 2017: Quantify the continuous dependence of SST-turbulent heat flux relationship on spatial scales. Geophys. Res. Lett., 44, 63266333, https://doi.org/10.1002/2017GL073695.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and P. L. Li, 2013: The impact of meso-scale eddies on the subtropical mode water in the western North Pacific. J. Ocean Univ. China, 12, 230236, https://doi.org/10.1007/s11802-013-2223-8.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and H. Hu, 2007: A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island. Geophys. Res. Lett., 34, L12710, https://doi.org/10.1029/2007GL029510.

    • Search Google Scholar
    • Export Citation
  • Liu, X., P. Chang, J. Kurian, R. Saravanan, and X. Lin, 2018: Satellite-observed precipitation response to ocean mesoscale eddies. J. Climate, 31, 68796895, https://doi.org/10.1175/JCLI-D-17-0668.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., H. Xu, C. Dong, P. Lin, and Y. Liu, 2015: Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos., 120, 63136330, https://doi.org/10.1002/2014JD022930.

    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Search Google Scholar
    • Export Citation
  • Masuzawa, J., 1969: Subtropical mode water. Deep-Sea Res. Oceanogr. Abstr., 16, 463472, https://doi.org/10.1016/0011-7471(69)90034-5.

    • Search Google Scholar
    • Export Citation
  • Maze, G., G. Forget, M. Buckley, J. Marshall, and I. Cerovečki, 2009: Using transformation and formation maps to study the role of air–sea heat fluxes in North Atlantic eighteen degree water formation. J. Phys. Oceanogr., 39, 18181835, https://doi.org/10.1175/2009JPO3985.1.

    • Search Google Scholar
    • Export Citation
  • Miyazawa, Y., and Coauthors, 2009: Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis. J. Oceanogr., 65, 737756, https://doi.org/10.1007/s10872-009-0063-3.

    • Search Google Scholar
    • Export Citation
  • Moreton, S., D. Ferreira, M. Roberts, and H. Hewitt, 2021: Air-sea turbulent heat flux feedback over mesoscale eddies. Geophys. Res. Lett., 48, e2021GL095407, https://doi.org/10.1029/2021GL095407.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., https://doi.org/10.5065/wgtk-4g06.

  • Nishikawa, S., H. Tsujino, K. Sakamoto, and H. Nakano, 2010: Effects of mesoscale eddies on subduction and distribution of subtropical mode water in an eddy–resolving OGCM of the western North Pacific. J. Phys. Oceanogr., 40, 17481765, https://doi.org/10.1175/2010JPO4261.1.

    • Search Google Scholar
    • Export Citation
  • Nishikawa, S., H. Tsujino, K. Sakamoto, and H. Nakano, 2013: Diagnosis of water mass transformation and formation rates in a high-resolution GCM of the North Pacific. J. Geophys. Res. Oceans, 118, 10511069, https://doi.org/10.1029/2012JC008116.

    • Search Google Scholar
    • Export Citation
  • Oka, E., 2009: Seasonal and interannual variation of North Pacific subtropical mode water in 2003–2006. J. Oceanogr., 65, 151164, https://doi.org/10.1007/s10872-009-0015-y.

    • Search Google Scholar
    • Export Citation
  • Oka, E., and B. Qiu, 2012: Progress of North Pacific mode water research in the past decade. J. Oceanogr., 68, 520, https://doi.org/10.1007/s10872-011-0032-5.

    • Search Google Scholar
    • Export Citation
  • Oka, E., B. Qiu, S. Kouketsu, K. Uehara, and T. Suga, 2012: Decadal seesaw of the central and subtropical mode water formation associated with the Kuroshio Extension variability. J. Oceanogr., 68, 355360, https://doi.org/10.1007/s10872-011-0098-0.

    • Search Google Scholar
    • Export Citation
  • Oka, E., and Coauthors, 2015: Decadal variability of subtropical mode water subduction and its impact on biogeochemistry. J. Oceanogr., 71, 389400, https://doi.org/10.1007/s10872-015-0300-x.

    • Search Google Scholar
    • Export Citation
  • Oka, E., K. Yamada, D. Sasano, K. Enyo, T. Nakano, and M. Ishii, 2019: Remotely forced decadal physical and biogeochemical variability of North Pacific subtropical mode water over the last 40 years. Geophys. Res. Lett., 46, 15551561, https://doi.org/10.1029/2018GL081330.

    • Search Google Scholar
    • Export Citation
  • Pezzi, L. P., and Coauthors, 2021: Oceanic eddy-induced modifications to air–sea heat and CO2 fluxes in the Brazil-Malvinas Confluence. Sci. Rep., 11, 10648, https://doi.org/10.1038/s41598-021-89985-9.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, https://doi.org/10.1175/JPO2807.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the formation of the North Pacific subtropical mode water: Oceanic versus atmospheric control. J. Phys. Oceanogr., 36, 13651380, https://doi.org/10.1175/JPO2918.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., S.  Chen, and P. Hacker, 2007: Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System Study (KESS). J. Phys. Oceanogr., 37, 9821000, https://doi.org/10.1175/JPO3097.1.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S.-P. Xie, H. Mitsudera, and A. Ishida, 2002: Subduction of the North Pacific mode waters in a global high-resolution GCM. J. Phys. Oceanogr., 32, 746763, https://doi.org/10.1175/1520-0485(2002)032<0746:SOTNPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., S. R. Jayne, J. L. McClean, and M. E. Maltrud, 2007: Formation of subtropical mode water in a high-resolution ocean simulation of the Kuroshio Extension region. Ocean Modell., 17, 338356, https://doi.org/10.1016/j.ocemod.2007.03.002.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., S. R. Jayne, and M. F. Cronin, 2014: Variations of the North Pacific subtropical mode water from direct observations. J. Climate, 27, 28422860, https://doi.org/10.1175/JCLI-D-13-00227.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., R. Senan, F. Molteni, S. Boussetta, M. Mayer, and S. P. E. Keeley, 2018: Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP. Geosci. Model Dev., 11, 36813712, https://doi.org/10.5194/gmd-11-3681-2018.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2019: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments. Geosci. Model Dev., 12, 49995028, https://doi.org/10.5194/gmd-12-4999-2019.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, https://doi.org/10.1126/science.1097403.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and S. Minobe, 2015: Climatological mean features and interannual to decadal variability of ring formations in the Kuroshio Extension region. J. Oceanogr., 71, 499509, https://doi.org/10.1007/s10872-014-0270-4.

    • Search Google Scholar
    • Export Citation
  • Semmler, T., and Coauthors, 2020: Simulations for CMIP6 with the AWI climate model AWI-CM-1-1. J. Adv. Model. Earth Syst., 12, e2019MS002009, https://doi.org/10.1029/2019MS002009.

    • Search Google Scholar
    • Export Citation
  • Shan, X., and Coauthors, 2020: Surface heat flux induced by mesoscale eddies cools the Kuroshio–Oyashio Extension region. Geophys. Res. Lett., 47, e2019GL086050, https://doi.org/10.1029/2019GL086050.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2014: A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst., 6, 10651094, https://doi.org/10.1002/2014MS000363.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., F. O. Bryan, S. P. Bishop, and R. A. Tomas, 2019: Air–sea turbulent heat fluxes in climate models and observational analyses: What drives their variability? J. Climate, 32, 23972421, https://doi.org/10.1175/JCLI-D-18-0576.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., A. K. DuVivier,