Abstract
In the modern ocean, the transformation of light surface waters to dense deep waters primarily occurs in the Atlantic basin rather than in the North Pacific or Southern Oceans. The reasons for this remain unclear, as both models and paleoclimatic observations suggest that sinking can sometimes occur in the Pacific. We present a six-box model of overturning that combines insights from a number of previous studies. A key determinant of the overturning configuration in our model is whether the Antarctic Intermediate Waters are denser than the northern subpolar waters, something that depends on the magnitude and configuration of atmospheric freshwater transport. For the modern ocean, we find that although the interbasin atmospheric freshwater flux suppresses Pacific sinking, the poleward atmospheric freshwater flux out of the subtropics enhances it. When atmospheric temperatures are held fixed, North Pacific overturning can strengthen with either increases or decreases in the hydrological cycle, as well as under reversal of the interbasin freshwater flux. Tipping-point behavior, where small changes in the hydrological cycle may cause the dominant location of densification of light waters to switch between basins and the magnitude of overturning within a basin to exhibit large jumps, is seen in both transient and equilibrium states. This behavior is modulated by parameters such as the poorly constrained lateral diffusive mixing coefficient. If hydrological cycle amplitude is varied consistently with global temperature, northern polar amplification is necessary for the Atlantic overturning to collapse. Certain qualitative insights incorporated in the model can be validated using a fully coupled climate model.
Significance Statement
Currently, the global overturning circulation involves the conversion of waters lighter than Antarctic Intermediate Water to deep waters denser than Antarctic Intermediate Water primarily in the North Atlantic, rather than in the North Pacific or Southern Oceans. Many different factors have been invoked to explain this configuration, with atmospheric freshwater transport, basin geometry, lateral mixing, and Southern Ocean winds playing major roles. This paper develops a simple theory that combines previous theories, presents the intriguing idea that alternate configurations might be possible, and identifies multiple possible tipping points between these states.
© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).