Tipping Points in Overturning Circulation Mediated by Ocean Mixing and the Configuration and Magnitude of the Hydrological Cycle: A Simple Model

Anand Gnanadesikan aMorton K. Blaustein Department of Earth and Planetary Science, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Anand Gnanadesikan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5784-1116
,
Gianluca Fabiani bDipartimento di Matematica e Applicazioni “Renato Caccioppoli,” University of Naples Federico II, Naples, Italy

Search for other papers by Gianluca Fabiani in
Current site
Google Scholar
PubMed
Close
,
Jingwen Liu aMorton K. Blaustein Department of Earth and Planetary Science, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Jingwen Liu in
Current site
Google Scholar
PubMed
Close
,
Renske Gelderloos aMorton K. Blaustein Department of Earth and Planetary Science, The Johns Hopkins University, Baltimore, Maryland
cDepartment of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands

Search for other papers by Renske Gelderloos in
Current site
Google Scholar
PubMed
Close
,
G. Jay Brett dJohns Hopkins Applied Physics Lab, Laurel, Maryland

Search for other papers by G. Jay Brett in
Current site
Google Scholar
PubMed
Close
,
Yannis Kevrekidis eDepartment of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Yannis Kevrekidis in
Current site
Google Scholar
PubMed
Close
,
Thomas Haine aMorton K. Blaustein Department of Earth and Planetary Science, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Thomas Haine in
Current site
Google Scholar
PubMed
Close
,
Marie-Aude Pradal aMorton K. Blaustein Department of Earth and Planetary Science, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Marie-Aude Pradal in
Current site
Google Scholar
PubMed
Close
,
Constantinos Siettos fDepartment of Applied Mathematics, University of Naples Federico II, Naples, Italy

Search for other papers by Constantinos Siettos in
Current site
Google Scholar
PubMed
Close
, and
Jennifer Sleeman dJohns Hopkins Applied Physics Lab, Laurel, Maryland

Search for other papers by Jennifer Sleeman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the modern ocean, the transformation of light surface waters to dense deep waters primarily occurs in the Atlantic basin rather than in the North Pacific or Southern Oceans. The reasons for this remain unclear, as both models and paleoclimatic observations suggest that sinking can sometimes occur in the Pacific. We present a six-box model of overturning that combines insights from a number of previous studies. A key determinant of the overturning configuration in our model is whether the Antarctic Intermediate Waters are denser than the northern subpolar waters, something that depends on the magnitude and configuration of atmospheric freshwater transport. For the modern ocean, we find that although the interbasin atmospheric freshwater flux suppresses Pacific sinking, the poleward atmospheric freshwater flux out of the subtropics enhances it. When atmospheric temperatures are held fixed, North Pacific overturning can strengthen with either increases or decreases in the hydrological cycle, as well as under reversal of the interbasin freshwater flux. Tipping-point behavior, where small changes in the hydrological cycle may cause the dominant location of densification of light waters to switch between basins and the magnitude of overturning within a basin to exhibit large jumps, is seen in both transient and equilibrium states. This behavior is modulated by parameters such as the poorly constrained lateral diffusive mixing coefficient. If hydrological cycle amplitude is varied consistently with global temperature, northern polar amplification is necessary for the Atlantic overturning to collapse. Certain qualitative insights incorporated in the model can be validated using a fully coupled climate model.

Significance Statement

Currently, the global overturning circulation involves the conversion of waters lighter than Antarctic Intermediate Water to deep waters denser than Antarctic Intermediate Water primarily in the North Atlantic, rather than in the North Pacific or Southern Oceans. Many different factors have been invoked to explain this configuration, with atmospheric freshwater transport, basin geometry, lateral mixing, and Southern Ocean winds playing major roles. This paper develops a simple theory that combines previous theories, presents the intriguing idea that alternate configurations might be possible, and identifies multiple possible tipping points between these states.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anand Gnanadesikan, gnanades@jhu.edu

Abstract

In the modern ocean, the transformation of light surface waters to dense deep waters primarily occurs in the Atlantic basin rather than in the North Pacific or Southern Oceans. The reasons for this remain unclear, as both models and paleoclimatic observations suggest that sinking can sometimes occur in the Pacific. We present a six-box model of overturning that combines insights from a number of previous studies. A key determinant of the overturning configuration in our model is whether the Antarctic Intermediate Waters are denser than the northern subpolar waters, something that depends on the magnitude and configuration of atmospheric freshwater transport. For the modern ocean, we find that although the interbasin atmospheric freshwater flux suppresses Pacific sinking, the poleward atmospheric freshwater flux out of the subtropics enhances it. When atmospheric temperatures are held fixed, North Pacific overturning can strengthen with either increases or decreases in the hydrological cycle, as well as under reversal of the interbasin freshwater flux. Tipping-point behavior, where small changes in the hydrological cycle may cause the dominant location of densification of light waters to switch between basins and the magnitude of overturning within a basin to exhibit large jumps, is seen in both transient and equilibrium states. This behavior is modulated by parameters such as the poorly constrained lateral diffusive mixing coefficient. If hydrological cycle amplitude is varied consistently with global temperature, northern polar amplification is necessary for the Atlantic overturning to collapse. Certain qualitative insights incorporated in the model can be validated using a fully coupled climate model.

Significance Statement

Currently, the global overturning circulation involves the conversion of waters lighter than Antarctic Intermediate Water to deep waters denser than Antarctic Intermediate Water primarily in the North Atlantic, rather than in the North Pacific or Southern Oceans. Many different factors have been invoked to explain this configuration, with atmospheric freshwater transport, basin geometry, lateral mixing, and Southern Ocean winds playing major roles. This paper develops a simple theory that combines previous theories, presents the intriguing idea that alternate configurations might be possible, and identifies multiple possible tipping points between these states.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anand Gnanadesikan, gnanades@jhu.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.3228 MB)
Save
  • Abernathey, R., A. Gnanadesikan, M.-A. Pradal, and M. A. Sundermeyer, 2022: Isopycnal mixing. Ocean Mixing, Elsevier, 215–256.

  • Alkhayuon, H., P. Ashwin, L. C. Jackson, C. Quinn, and R. A. Wood, 2019: Basin bifurcations, oscillatory instability and rate-induced thresholds for Atlantic meridional overturning circulation in a global oceanic box model. Proc. Roy. Soc. London, 475A, 20190051, https://doi.org/10.1098/rspa.2019.0051.

    • Search Google Scholar
    • Export Citation
  • Allgower, E. L., and K. Georg, 2012: Numerical Continuation Methods: An Introduction. Springer Series in Computational Mathematics, Vol. 13, Springer Science & Business Media, 388 pp.

  • Allison, L. C., H. L. Johnson, D. P. Marshall, and D. R. Munday, 2010: Where do winds drive the Antarctic Circumpolar Current? Geophys. Res. Lett., 37, L12605, https://doi.org/10.1029/2010GL043355.

    • Search Google Scholar
    • Export Citation
  • Bahl, A., A. Gnanadesikan, and M.-A. Pradal, 2019: Variations in ocean deoxygenation across Earth system models: Isolating the role of parameterized lateral mixing. Global Biogeochem. Cycles, 33, 703724, https://doi.org/10.1029/2018GB006121.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970985, https://doi.org/10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., A. V. Fedorov, D. M. Sigman, S. L. Jaccard, R. Tiedemann, and G. H. Haug, 2017: Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv., 3, e1700156, https://doi.org/10.1126/sciadv.1700156.

    • Search Google Scholar
    • Export Citation
  • de Boer, A. M., D. M. Sigman, J. Toggweiler, and J. L. Russell, 2007: Effect of global ocean temperature change on deep ocean ventilation. Paleoceanogr. Paleclimatol., 22, PA2210, https://doi.org/10.1029/2005PA001242.

    • Search Google Scholar
    • Export Citation
  • de Boer, A. M., J. R. Toggweiler, and D. M. Sigman, 2008: Atlantic dominance of the meridional overturning circulation. J. Phys. Oceanogr., 38, 435450, https://doi.org/10.1175/2007JPO3731.1.

    • Search Google Scholar
    • Export Citation
  • de Boer, A. M., A. Gnanadesikan, N. R. Edwards, and A. J. Watson, 2010: Meridional density gradients do not control the Atlantic overturning circulation. J. Phys. Oceanogr., 40, 368380, https://doi.org/10.1175/2009JPO4200.1.

    • Search Google Scholar
    • Export Citation
  • DeVries, T., and F. Primeau, 2011: Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr., 41, 23812401, https://doi.org/10.1175/JPO-D-10-05011.1.

    • Search Google Scholar
    • Export Citation
  • Dhooge, A., W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, and B. Sautois, 2008: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst., 14, 147175, https://doi.org/10.1080/13873950701742754.

    • Search Google Scholar
    • Export Citation
  • Doedel, E., and L. S. Tuckerman, 2012: Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. The IMA Volumes in Mathematics and its Applications, Vol. 119, Springer, 481 pp.

  • Doedel, E. J., 2007: Lecture notes on numerical analysis of nonlinear equations. Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, Springer, 1–49.

  • Fabiani, G., F. Calabrò, L. Russo, and C. Siettos, 2021: Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning machines. J. Sci. Comput., 89, 44, https://doi.org/10.1007/s10915-021-01650-5.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and J.-M. Campin, 2010: Localization of deep water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 14561476, https://doi.org/10.1175/2009JCLI3197.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., and Coauthors, 2018: Atlantic-Pacific asymmetry in deep-water formation. Annu. Rev. Earth Planet. Sci., 46, 327352, https://doi.org/10.1146/annurev-earth-082517-010045.

    • Search Google Scholar
    • Export Citation
  • Ford, H. L., N. J. Burls, P. Jacobs, A. Jahn, R. P. Caballero-Gill, D. A. Hodell, and A. V. Fedorov, 2022: Sustained mid-Pliocene warmth led to deep water formation in the North Pacific. Nat. Geosci., 15, 658663, https://doi.org/10.1038/s41561-022-00978-3.

    • Search Google Scholar
    • Export Citation
  • Fučkar, N. S., and G. K. Vallis, 2007: Interhemispheric influence of surface buoyancy conditions on a circumpolar current. Geophys. Res. Lett., 34, L14605, https://doi.org/10.1029/2007GL030379.

    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and Coauthors, 2011: Climate variability and radiocarbon in the CM2Mc Earth system model. J. Climate, 24, 42304254, https://doi.org/10.1175/2011JCLI3919.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, https://doi.org/10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015: Exploring the isopycnal mixing and helium–heat paradoxes in a suite of Earth system models. Ocean Sci., 11, 591605, https://doi.org/10.5194/os-11-591-2015.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. Kelson, and M. Sten, 2018: Flux correction and overturning stability: Insights from a dynamical box model. J. Climate, 31, 93359350, https://doi.org/10.1175/JCLI-D-18-0388.1.

    • Search Google Scholar
    • Export Citation
  • Govaerts, W., 2000: Numerical bifurcation analysis for ODEs. J. Comput. Appl. Math., 125, 5768, https://doi.org/10.1016/S0377-0427(00)00458-1.

    • Search Google Scholar
    • Export Citation
  • Hahn, L. C., K. C. Armour, M. D. Zelinka, C. M. Bitz, and A. Donohoe, 2021: Contributions to polar amplification in CMIP5 and CMIP6 models. Front. Earth Sci., 9, 710036, https://doi.org/10.3389/feart.2021.710036.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., and A. Gnanadesikan, 2001: An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. J. Phys. Oceanogr., 31, 33123330, https://doi.org/10.1175/1520-0485(2001)031<3312:AEOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., J. R. Luyten, and H. M. Stommel, 1992: Multiple equilibrium states in combined thermal and saline circulation. J. Phys. Oceanogr., 22, 231246, https://doi.org/10.1175/1520-0485(1992)022<0231:MESICT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, https://doi.org/10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., D. P. Marshall, and D. A. Sproson, 2007: Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Climate Dyn., 29, 821836, https://doi.org/10.1007/s00382-007-0262-9.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., P. Cessi, D. P. Marshall, F. Schloesser, and M. A. Spall, 2019: Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 124, 53765399, https://doi.org/10.1029/2019JC015330.

    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2016: Interbasin transport of the meridional overturning circulation. J. Phys. Oceanogr., 46, 11571169, https://doi.org/10.1175/JPO-D-15-0197.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C. S., and P. Cessi, 2017: Size matters: Another reason why the Atlantic is saltier than the Pacific. J. Phys. Oceanogr., 47, 28432859, https://doi.org/10.1175/JPO-D-17-0075.1.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and T. W. N. Haine, 2019: Ocean Circulation in Three Dimensions. Cambridge University Press, 466 pp.

  • Levermann, A., and J. J. Fürst, 2010: Atlantic pycnocline theory scrutinized using a coupled climate model. Geophys. Res. Lett., 37, L14602, https://doi.org/10.1029/2010GL044180.

    • Search Google Scholar
    • Export Citation
  • Liu, W., S.-P. Xie, Z. Liu, and J. Zhu, 2017: Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci. Adv., 3, e1601666, https://doi.org/10.1126/sciadv.1601666.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 48 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

    • Search Google Scholar
    • Export Citation
  • Marinov, I., A. Gnanadesikan, J. R. Toggweiler, and J. L. Sarmiento, 2006: The Southern Ocean biogeochemical divide. Nature, 441, 964967, https://doi.org/10.1038/nature04883.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502, https://doi.org/10.1175/2010JPO4529.1.

    • Search Google Scholar
    • Export Citation
  • Nilsson, J., P. L. Langen, D. Ferreira, and J. Marshall, 2013: Ocean basin geometry and the salinification of the Atlantic Ocean. J. Climate, 26, 61636184, https://doi.org/10.1175/JCLI-D-12-00358.1.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-G., and J. A. Whitehead, 1999: Rotating convection driven by differential bottom heating. J. Phys. Oceanogr., 29, 12081220, https://doi.org/10.1175/1520-0485(1999)029<1208:RCDBDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pradal, M.-A., and A. Gnanadesikan, 2014: How does the Redi parameter for mesoscale mixing impact global climate in an Earth system model? J. Adv. Model. Earth Syst., 6, 586601, https://doi.org/10.1002/2013MS000273.

    • Search Google Scholar
    • Export Citation
  • Rae, J. W. B., M. Sarnthein, G. L. Foster, A. Ridgwell, P. M. Grootes, and T. Elliott, 2014: Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanogr. Paleclimatol., 29, 645667, https://doi.org/10.1002/2013PA002570.

    • Search Google Scholar
    • Export Citation
  • Rafter, P. A., and Coauthors, 2022: Global reorganization of deep-sea circulation and carbon storage after the last ice age. Sci. Adv., 8, eabq5434, https://doi.org/10.1126/sciadv.abq5434.

    • Search Google Scholar
    • Export Citation
  • Ragen, S., K. C. Armour, L. Thompson, A. Shao, and D. Darr, 2022: The role of Atlantic basin geometry in meridional overturning circulation. J. Phys. Oceanogr., 52, 475492, https://doi.org/10.1175/JPO-D-21-0036.1.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rooth, C., 1982: Hydrology and ocean circulation. Prog. Oceanogr., 11, 131149, https://doi.org/10.1016/0079-6611(82)90006-4.

  • Schloesser, F., 2020: The Atlantic meridional overturning circulation and the cabbeling effect. J. Phys. Oceanogr., 50, 25612572, https://doi.org/10.1175/JPO-D-20-0085.1.

    • Search Google Scholar
    • Export Citation
  • Sleeman, J., and Coauthors, 2023a: A generative adversarial network for climate tipping point discovery (TIP-GAN). arXiv, 2302.10274v1, https://doi.org/10.48550/arXiv.2302.10274.

  • Sleeman, J., and Coauthors, 2023b: Using artificial intelligence to aid scientific discovery of climate tipping points. arXiv, 2302.06852v1, https://doi.org/10.48550/arXiv.2302.06852.

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230, https://doi.org/10.1111/j.2153-3490.1961.tb00079.x.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1997: North Pacific intermediate water transports in the mixed water region. J. Phys. Oceanogr., 27, 17951803, https://doi.org/10.1175/1520-0485(1997)027<1795:NPIWTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1993: Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds? The Global Carbon Cycle, Springer, 303–331.

  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500, https://doi.org/10.1016/0967-0637(95)00012-U.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Y. Zhang, J. T. Fasullo, and L. Cheng, 2019: Observation-based estimates of global and basin ocean meridional heat transport time series. J. Climate, 32, 45674583, https://doi.org/10.1175/JCLI-D-18-0872.1.

    • Search Google Scholar
    • Export Citation
  • Tsukernik, M., and A. H. Lynch, 2013: Atmospheric meridional moisture flux over the Southern Ocean: A story of the Amundsen Sea. J. Climate, 26, 80558064, https://doi.org/10.1175/JCLI-D-12-00381.1.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., J. R. Toggweiler, K. Bryan, and Y. Feliks, 1994: Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr., 24, 217232, https://doi.org/10.1175/1520-0485(1994)024<0217:IOTTCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., 1983: Why is no deep water formed in the North Pacific? J. Mar. Res., 41, 327347, https://doi.org/10.1357/002224083788520207.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, https://doi.org/10.1175/2011JPO4570.1.

    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., R. Ferrari, and G. R. Flierl, 2020: Basin-width dependence of northern deep convection. Geophys. Res. Lett., 47, e2020GL089135, https://doi.org/10.1029/2020GL089135.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, S. A. Josey, T. Lee, A. Kumar, C. Wen, and Y. Xue, 2017: The global ocean water cycle in atmospheric reanalysis, satellite, and ocean salinity. J. Climate, 30, 38293852, https://doi.org/10.1175/JCLI-D-16-0479.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, https://doi.org/10.1175/JCLI3460.1.

    • Search Google Scholar
    • Export Citation
  • Zweng, M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 47 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 588 588 46
Full Text Views 224 224 45
PDF Downloads 263 263 53