Internal Tides at the Coast: Energy Flux of Baroclinic Tides Propagating into the Deep Ocean in the Presence of Supercritical Shelf Topography

Varvara E. Zemskova aOregon State University, Corvallis, Oregon

Search for other papers by Varvara E. Zemskova in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8263-6931
,
Ruth C. Musgrave bDalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Ruth C. Musgrave in
Current site
Google Scholar
PubMed
Close
, and
James A. Lerczak aOregon State University, Corvallis, Oregon

Search for other papers by James A. Lerczak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The generation of internal tides at coastal margins is an important mechanism for the loss of energy from the barotropic tide. Although some previous studies attempted to quantify energy loss from the barotropic tides into the deep ocean, global estimates are complicated by the coastal geometry and spatially and temporally variable stratification. Here, we explore the effects of supercritical, finite amplitude bottom topography, which is difficult to solve analytically. We conduct a suite of 2D linear numerical simulations of the barotropic tide interacting with a uniform alongshore coastal shelf, representing the tidal forcing by a body force derived from the vertical displacement of the isopycnals by the gravest coastal trapped wave (of which a Kelvin wave is a close approximation). We explore the effects of latitude, topographic parameters, and nonuniform stratification on the baroclinic tidal energy flux propagating into the deep ocean away from the shelf. By varying the pycnocline depth and thickness, we extend previous studies of shallow and infinitesimally thin pycnoclines to include deep permanent pycnoclines. We find that scaling laws previously derived in terms of continental shelf width and depth for shallow and thin pycnoclines generally hold for the deeper and thicker pycnoclines considered in this study. We also find that baroclinic tidal energy flux is more sensitive to topographic than stratification parameters. Interestingly, we find that the slope of the shelf itself is an important parameter but not the width of the continental slope in the case of these steep topographies.

Significance Statement

The objective of this study is to better understand how vertical density stratification, which can vary seasonally in the ocean, affects the interaction of tides with steep coastal topography and the generation of waves that travel away from the coast in the ocean interior. These waves in the interior can travel over long distances, carrying energy offshore into the deep ocean. Our results suggest that the amount of energy in these internal waves is more sensitive to changes in topography and latitude than to the vertical density profile. The scaling laws found in this study suggest which parameters are important for calculating global estimates of the energy lost from the tide to the ocean interior at the coastal margins.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Varvara E. Zemskova, barbara.zemskova@oregonstate.edu

Abstract

The generation of internal tides at coastal margins is an important mechanism for the loss of energy from the barotropic tide. Although some previous studies attempted to quantify energy loss from the barotropic tides into the deep ocean, global estimates are complicated by the coastal geometry and spatially and temporally variable stratification. Here, we explore the effects of supercritical, finite amplitude bottom topography, which is difficult to solve analytically. We conduct a suite of 2D linear numerical simulations of the barotropic tide interacting with a uniform alongshore coastal shelf, representing the tidal forcing by a body force derived from the vertical displacement of the isopycnals by the gravest coastal trapped wave (of which a Kelvin wave is a close approximation). We explore the effects of latitude, topographic parameters, and nonuniform stratification on the baroclinic tidal energy flux propagating into the deep ocean away from the shelf. By varying the pycnocline depth and thickness, we extend previous studies of shallow and infinitesimally thin pycnoclines to include deep permanent pycnoclines. We find that scaling laws previously derived in terms of continental shelf width and depth for shallow and thin pycnoclines generally hold for the deeper and thicker pycnoclines considered in this study. We also find that baroclinic tidal energy flux is more sensitive to topographic than stratification parameters. Interestingly, we find that the slope of the shelf itself is an important parameter but not the width of the continental slope in the case of these steep topographies.

Significance Statement

The objective of this study is to better understand how vertical density stratification, which can vary seasonally in the ocean, affects the interaction of tides with steep coastal topography and the generation of waves that travel away from the coast in the ocean interior. These waves in the interior can travel over long distances, carrying energy offshore into the deep ocean. Our results suggest that the amount of energy in these internal waves is more sensitive to changes in topography and latitude than to the vertical density profile. The scaling laws found in this study suggest which parameters are important for calculating global estimates of the energy lost from the tide to the ocean interior at the coastal margins.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Varvara E. Zemskova, barbara.zemskova@oregonstate.edu
Save
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1973: The generation of internal tides by flat-bump topography. Deep-Sea Res. Oceanogr. Abstr., 20, 179205, https://doi.org/10.1016/0011-7471(73)90050-8.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res., 29A, 307338, https://doi.org/10.1016/0198-0149(82)90098-X.

  • Barbot, S., F. Lyard, M. Tchilibou, and L. Carrere, 2021: Background stratification impacts on internal tide generation and abyssal propagation in the western equatorial Atlantic and the Bay of Biscay. Ocean Sci., 17, 15631583, https://doi.org/10.5194/os-17-1563-2021.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., Jr., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Cacchione, D. A., L. F. Pratson, and A. S. Ogston, 2002: The shaping of continental slopes by internal tides. Science, 296, 724727, https://doi.org/10.1126/science.1069803.

    • Search Google Scholar
    • Export Citation
  • Carasso, A., 1969: Finite-difference methods and the eigenvalue problem for nonselfadjoint Sturm-Liouville operators. Math. Comput., 23, 717729, https://doi.org/10.1090/S0025-5718-1969-0258291-7.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and M. C. Hendershott, 1982: Shelf wave dispersion in a geophysical ocean. Dyn. Atmos. Oceans, 7, 1731, https://doi.org/10.1016/0377-0265(82)90003-3.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., J. Xie, J. Xu, Y. He, and S. Cai, 2017: Selection of internal wave beam directions by a geometric constraint provided by topography. Phys. Fluids, 29, 066602, https://doi.org/10.1063/1.4984245.

    • Search Google Scholar
    • Export Citation
  • Chuang, W.-S., and D.-P. Wang, 1981: Effects of density front on the generation and propagation of internal tides. J. Phys. Oceanogr., 11, 13571374, https://doi.org/10.1175/1520-0485(1981)011<1357:EODFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., 1987: Solutions for internal tidal generation over coastal topography. J. Mar. Res., 45, 83105, https://doi.org/10.1357/002224087788400954.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., and T. J. Sherwin, 1996: The extension of baroclinic coastal-trapped wave theory to superinertial frequencies. J. Phys. Oceanogr., 26, 23052315, https://doi.org/10.1175/1520-0485(1996)026<2305:TEOBCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., J. M. Huthnance, and T. J. Sherwin, 2001: Coastal-trapped waves and tides at near-inertial frequencies. J. Phys. Oceanogr., 31, 29582970, https://doi.org/10.1175/1520-0485(2001)031<2958:CTWATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dauxois, T., A. Didier, and E. Falcon, 2004: Observation of near-critical reflection of internal waves in a stably stratified fluid. Phys. Fluids, 16, 19361941, https://doi.org/10.1063/1.1711814.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., S. Falahat, G. Madec, F. Roquet, J. Nycander, and C. Vic, 2019: Toward global maps of internal tide energy sinks. Ocean Modell., 137, 5275, https://doi.org/10.1016/j.ocemod.2019.03.010.

    • Search Google Scholar
    • Export Citation
  • Drake, H. F., X. Ruan, J. Callies, K. Ogden, A. M. Thurnherr, and R. Ferrari, 2022: Dynamics of eddying abyssal mixing layers over sloping rough topography. J. Phys. Oceanogr., 52, 31993219, https://doi.org/10.1175/JPO-D-22-0009.1.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., W. G. Zhang, and Y.-T. Lin, 2012: Studies of internal tide generation at a slope with nonlinear and linearized simulations: Dynamics and implications for ocean acoustics. Proc. 2012 Oceans, Hampton Roads, VA, Institute of Electrical and Electronics Engineers, 1–6.

  • Early, J. J., M. P. Lelong, and K. S. Smith, 2020: Fast and accurate computation of vertical modes. J. Adv. Model. Earth Syst., 12, e2019MS001939, https://doi.org/10.1029/2019MS001939.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Search Google Scholar
    • Export Citation
  • Feucher, C., G. Maze, and H. Mercier, 2019: Subtropical mode water and permanent pycnocline properties in the world ocean. J. Geophys. Res. Oceans, 124, 11391154, https://doi.org/10.1029/2018JC014526.

    • Search Google Scholar
    • Export Citation
  • Fructus, D., M. Carr, J. Grue, A. Jensen, and P. A. Davies, 2009: Shear-induced breaking of large internal solitary waves. J. Fluid Mech., 620, 129, https://doi.org/10.1017/S0022112008004898.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and T. Gerkema, 2007: On the body-force term in internal-tide generation. J. Phys. Oceanogr., 37, 21722175, https://doi.org/10.1175/JPO3165.1.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., and S. Sarkar, 2011a: Boundary mixing by density overturns in an internal tidal beam. Geophys. Res. Lett., 38, L14608, https://doi.org/10.1029/2011GL048135.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., and S. Sarkar, 2011b: Direct and large-eddy simulations of internal tide generation at a near-critical slope. J. Fluid Mech., 681, 4879, https://doi.org/10.1017/jfm.2011.170.

    • Search Google Scholar
    • Export Citation
  • GEBCO Compilation Group, 2020: GEBCO_2020 grid. National Oceanography Centre, accessed 20 September 2023, https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9.

  • Gekeler, E., 1974: On the eigenvectors of a finite-difference approximation to the Sturm-Liouville eigenvalue problem. Math. Comput., 28, 973979, https://doi.org/10.1090/S0025-5718-1974-0356524-1.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., 2001: Internal and interfacial tides: Beam scattering and local generation of solitary waves. J. Mar. Res., 59, 227255, https://doi.org/10.1357/002224001762882646.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., and H. van Haren, 2012: Absence of internal tidal beams due to non-uniform stratification. J. Sea Res., 74, 27, https://doi.org/10.1016/j.seares.2012.03.008.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., F.-P. A. Lam, and L. R. M. Maas, 2004: Internal tides in the Bay of Biscay: Conversion rates and seasonal effects. Deep-Sea Res. II, 51, 29953008, https://doi.org/10.1016/j.dsr2.2004.09.012.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., C. Staquet, and P. Bouruet-Aubertot, 2006: Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett., 33, L08604, https://doi.org/10.1029/2005GL025105.

    • Search Google Scholar
    • Export Citation
  • Gheorghiu, C.-I., and B. Zinsou, 2019: Analytic vs. numerical solutions to a Sturm-Liouville transmission eigenproblem. J. Numer. Anal. Approx. Theory, 48, 159174, https://doi.org/10.33993/jnaat482-1201.

    • Search Google Scholar
    • Export Citation
  • Griffiths, S. D., and R. H. J. Grimshaw, 2007: Internal tide generation at the continental shelf modeled using a modal decomposition: Two-dimensional results. J. Phys. Oceanogr., 37, 428451, https://doi.org/10.1175/JPO3068.1.

    • Search Google Scholar
    • Export Citation
  • Grisouard, N., and C. Staquet, 2010: Numerical simulations of the local generation of internal solitary waves in the Bay of Biscay. Nonlinear Processes Geophys., 17, 575584, https://doi.org/10.5194/npg-17-575-2010.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, https://doi.org/10.1016/S0377-0265(00)00049-X.

    • Search Google Scholar
    • Export Citation
  • Hall, R. A., J. M. Huthnance, and R. G. Williams, 2013: Internal wave reflection on shelf slopes with depth-varying stratification. J. Phys. Oceanogr., 43, 248258, https://doi.org/10.1175/JPO-D-11-0192.1.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21, 610619, https://doi.org/10.1175/1520-0485(1991)021%3C0610:OTPGFO%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartharn-Evans, S. G., M. Carr, M. Stastna, and P. A. Davies, 2022: Stratification effects on shoaling internal solitary waves. J. Fluid Mech., 933, A19, https://doi.org/10.1017/jfm.2021.1049.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1975: On trapped waves over a continental shelf. J. Fluid Mech., 69, 689704, https://doi.org/10.1017/S0022112075001632.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1978: On coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 7492, https://doi.org/10.1175/1520-0485(1978)008<0074:OCTWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1981: Waves and currents near the continental shelf edge. Prog. Oceanogr., 10, 193226, https://doi.org/10.1016/0079-6611(81)90004-5.

    • Search Google Scholar
    • Export Citation
  • Katsumata, K., 2006: Two- and three-dimensional numerical models of internal tide generation at a continental slope. Ocean Modell., 12, 3245, https://doi.org/10.1016/j.ocemod.2005.03.001.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2016: The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr., 46, 37773788, https://doi.org/10.1175/JPO-D-16-0131.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, https://doi.org/10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res., 115, C06014, https://doi.org/10.1029/2009JC005618.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, and J. D. Nash, 2013: A coupled model for Laplace’s tidal equations in a fluid with one horizontal dimension and variable depth. J. Phys. Oceanogr., 43, 17801797, https://doi.org/10.1175/JPO-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., H. L. Simmons, D. Braznikov, S. Kelly, J. A. MacKinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016: Reflection of linear internal tides from realistic topography: The Tasman continental slope. J. Phys. Oceanogr., 46, 33213337, https://doi.org/10.1175/JPO-D-16-0061.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927, https://doi.org/10.1175/JPO-D-11-075.1.

    • Search Google Scholar
    • Export Citation
  • Lahaye, N., and S. G. Llewellyn Smith, 2020: Modal analysis of internal wave propagation and scattering over large-amplitude topography. J. Phys. Oceanogr., 50, 305321, https://doi.org/10.1175/JPO-D-19-0005.1.

    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., 2014: Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech., 46, 231254, https://doi.org/10.1146/annurev-fluid-011212-140701.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and A. Adcroft, 2003: Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33, 22242246, https://doi.org/10.1175/1520-0485(2003)033<2224:IWBACA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., C. D. Winant, and M. C. Hendershott, 2003: Observations of the semidiurnal internal tide on the Southern California slope and shelf. J. Geophys. Res., 108, 3068, https://doi.org/10.1029/2001JC001128.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and H.-L. Kuo, 1969: A reliable method for the numerical integration of a large class of ordinary and partial differential equations. Mon. Wea. Rev., 97, 732734, https://doi.org/10.1175/1520-0493(1969)097%3C0732:ARMFTN%3E2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, K., J. Sun, C. Guo, Y. Yang, W. Yu, and Z. Wei, 2019: Seasonal and spatial variations of the M2 internal tide in the Yellow Sea. J. Geophys. Res. Oceans, 124, 11151138, https://doi.org/10.1029/2018JC014819.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566, https://doi.org/10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2003: Tidal conversion at a very steep ridge. J. Fluid Mech., 495, 175191, https://doi.org/10.1017/S0022112003006098.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and J. Smagorinsky, 1967: Simulated climatology of a general circulation model with a hydrologic cycle II. Analysis of the tropical atmosphere. Mon. Wea. Rev., 95, 155169, https://doi.org/10.1175/1520-0493(1967)095<0155:SCOAGC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maugé, R., and T. Gerkema, 2008: Generation of weakly nonlinear nonhydrostatic internal tides over large topography: A multi-modal approach. Nonlinear Processes Geophys., 15, 233244, https://doi.org/10.5194/npg-15-233-2008.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 1982: On the convergence and error problems of the calculation of the pressure gradient force in sigma coordinate models. Geophys. Astrophys. Fluid Dyn., 19, 105117, https://doi.org/10.1080/03091928208208949.

    • Search Google Scholar
    • Export Citation
  • Morozov, E. G., 1995: Semidiurnal internal wave global field. Deep-Sea Res. I, 42, 135148, https://doi.org/10.1016/0967-0637(95)92886-C.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., 2019: Energy fluxes in coastal trapped waves. J. Phys. Oceanogr., 49, 30613068, https://doi.org/10.1175/JPO-D-18-0172.1.

    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., 1980: Topographically trapped waves. Annu. Rev. Fluid Mech., 12, 4576, https://doi.org/10.1146/annurev.fl.12.010180.000401.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, https://doi.org/10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Papoutsellis, C. E., M. J. Mercier, and N. Grisouard, 2023: Internal tide generation from non-uniform barotropic body forcing. J. Fluid Mech., 964, A20, https://doi.org/10.1017/jfm.2023.358.

    • Search Google Scholar
    • Export Citation
  • Rattray, M., Jr., 1960: On the coastal generation of internal tides. Tellus, 12A, 5462, https://doi.org/10.3402/tellusa.v12i1.9344.

  • Rattray, M., Jr., 1969: Generation of the long internal waves at the continental slope. Deep-Sea Res., 16, 179195.

  • Rayson, M. D., N. L. Jones, and G. N. Ivey, 2012: Temporal variability of the standing internal tide in the Browse basin, western Australia. J. Geophys. Res., 117, C06013, https://doi.org/10.1029/2011JC007523.

    • Search Google Scholar
    • Export Citation
  • Rayson, M. D., N. L. Jones, and G. N. Ivey, 2019: Observations of large-amplitude mode-2 nonlinear internal waves on the Australian North West Shelf. J. Phys. Oceanogr., 49, 309328, https://doi.org/10.1175/JPO-D-18-0097.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108, 3090, https://doi.org/10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Sherwin, T., and N. Taylor, 1989: The application of a finite difference model of internal tide generation to the NW European Shelf. Deutsche Hydrografische Z., 42, 151167, https://doi.org/10.1007/BF02226292.

    • Search Google Scholar
    • Export Citation
  • Sherwin, T. J., and N. K. Taylor, 1990: Numerical investigations of linear internal tide generation in the Rockall Trough. Deep-Sea Res., 37A, 15951618, https://doi.org/10.1016/0198-0149(90)90064-3.

    • Search Google Scholar
    • Export Citation
  • Sherwin, T. J., V. I. Vlasenko, N. Stashchuk, D. R. G. Jeans, and B. Jones, 2002: Along-slope generation as an explanation for some unusually large internal tides. Deep-Sea Res. I, 49, 17871799, https://doi.org/10.1016/S0967-0637(02)00096-1.

    • Search Google Scholar
    • Export Citation
  • Sikirić, M. D., I. Janeković, and M. Kuzmić, 2009: A new approach to bathymetry smoothing in sigma-coordinate ocean models. Ocean Modell., 29, 128136, https://doi.org/10.1016/j.ocemod.2009.03.009.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2014: Accuracy assessment of global barotropic ocean tide models. Rev. Geophys., 52, 243282, https://doi.org/10.1002/2014RG000450.

    • Search Google Scholar
    • Export Citation
  • Stevens, C. L., P. J. Sutton, and C. S. Law, 2012: Internal waves downstream of Norfolk Ridge, western Pacific, and their biophysical implications. Limnol. Oceanogr., 57, 897911, https://doi.org/10.4319/lo.2012.57.4.0897.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2016: Eddy generation and jet formation via dense water outflows across the Antarctic continental slope. J. Phys. Oceanogr., 46, 37293750, https://doi.org/10.1175/JPO-D-16-0145.1.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., S. Stringer, C. Garrett, and D. Perrault-Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res. I, 50, 9871003, https://doi.org/10.1016/S0967-0637(03)00096-7.

    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., and J. A. Barth, 2015: Semidiurnal baroclinic tides on the central Oregon inner shelf. J. Phys. Oceanogr., 45, 26402659, https://doi.org/10.1175/JPO-D-14-0198.1.

    • Search Google Scholar
    • Export Citation
  • Tuerena, R. E., R. G. Williams, C. Mahaffey, C. Vic, J. A. M. Green, A. Naveira-Garabato, A. Forryan, and J. Sharples, 2019: Internal tides drive nutrient fluxes into the deep chlorophyll maximum over mid-ocean ridges. Global Biogeochem. Cycles, 33, 9951009, https://doi.org/10.1029/2019GB006214.

    • Search Google Scholar
    • Export Citation
  • Vieira, G. S., and M. R. Allshouse, 2020: Internal wave boluses as coherent structures in a continuously stratified fluid. J. Fluid Mech., 885, A35, https://doi.org/10.1017/jfm.2019.993.

    • Search Google Scholar
    • Export Citation
  • Wang, S., X. Chen, Q. Li, J. Wang, J. Meng, and M. Zhao, 2018: Scattering of low-mode internal tides at different shaped continental shelves. Cont. Shelf Res., 169, 1724, https://doi.org/10.1016/j.csr.2018.09.010.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. Cao, X. Chen, Q. Li, and J. Song, 2021: On the resonant triad interaction over mid-ocean ridges. Ocean Modell., 158, 101734, https://doi.org/10.1016/j.ocemod.2020.101734.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and T. Zhang, 2017: Scattering of a semidiurnal barotropic Kelvin wave into internal waves over wide continental shelves. J. Phys. Oceanogr., 47, 25452562, https://doi.org/10.1175/JPO-D-16-0284.1.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and S. Elipot, 2021: An assessment of global ocean barotropic tide models using geodetic mission altimetry and surface drifters. J. Phys. Oceanogr., 51, 6382, https://doi.org/10.1175/JPO-D-20-0089.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., and A. E. Yankovsky, 2016: On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves. J. Geophys. Res. Oceans, 121, 30583074, https://doi.org/10.1002/2015JC011617.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 466 466 34
Full Text Views 169 169 13
PDF Downloads 174 174 17