Formation of Eastern Boundary Undercurrents via Mesoscale Eddy Rectification

Andrew L. Stewart aDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Andrew L. Stewart in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5861-4070
,
Yan Wang bDepartment of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
cCenter for Ocean Research in Hong Kong and Macau, Hong Kong University of Science and Technology, Hong Kong, China

Search for other papers by Yan Wang in
Current site
Google Scholar
PubMed
Close
,
Aviv Solodoch aDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
dInstitute of Earth Sciences, Hebrew University of Jerusalem, Rehovot, Israel

Search for other papers by Aviv Solodoch in
Current site
Google Scholar
PubMed
Close
,
Ru Chen eSchool of Marine Science and Technology, Tianjin University, Tianjin, China

Search for other papers by Ru Chen in
Current site
Google Scholar
PubMed
Close
, and
James C. McWilliams aDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Eastern boundary upwelling systems (EBUSs) host equatorward wind-driven near-surface currents overlying poleward subsurface undercurrents. Various previous theories for these undercurrents have emphasized the role of poleward alongshore pressure gradient forces (APFs). Energetic mesoscale variability may also serve to accelerate undercurrents via mesoscale stirring of the potential vorticity gradient imposed by the continental slope. However, it remains unclear whether this eddy rectification mechanism contributes substantially to driving poleward undercurrents in EBUS. This study isolates the influence of eddy rectification on undercurrents via a suite of idealized simulations forced either by alongshore winds, with or without an APF, or by randomly generated mesoscale eddies. It is found that the simulations develop undercurrents with strengths comparable to those found in nature in both wind-forced and randomly forced experiments. Analysis of the momentum budget reveals that the along-isobath undercurrent flow is accelerated by isopycnal advective eddy momentum fluxes and the APF and retarded by frictional drag. The undercurrent acceleration may manifest as eddy momentum fluxes or as topographic form stress depending on the coordinate system used to compute the momentum budget, which reconciles these findings with previous work that linked eddy acceleration of the undercurrent to topographic form stress. The leading-order momentum balance motivates a scaling for the strength of the undercurrent that explains most of the variance across the simulations. These findings indicate that eddy rectification is of comparable importance to the APF in driving poleward undercurrents in EBUSs and motivate further work to diagnose this effect in high-resolution models and observations and to parameterize it in coarse-resolution ocean/climate models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew L. Stewart, astewart@atmos.ucla.edu

Abstract

Eastern boundary upwelling systems (EBUSs) host equatorward wind-driven near-surface currents overlying poleward subsurface undercurrents. Various previous theories for these undercurrents have emphasized the role of poleward alongshore pressure gradient forces (APFs). Energetic mesoscale variability may also serve to accelerate undercurrents via mesoscale stirring of the potential vorticity gradient imposed by the continental slope. However, it remains unclear whether this eddy rectification mechanism contributes substantially to driving poleward undercurrents in EBUS. This study isolates the influence of eddy rectification on undercurrents via a suite of idealized simulations forced either by alongshore winds, with or without an APF, or by randomly generated mesoscale eddies. It is found that the simulations develop undercurrents with strengths comparable to those found in nature in both wind-forced and randomly forced experiments. Analysis of the momentum budget reveals that the along-isobath undercurrent flow is accelerated by isopycnal advective eddy momentum fluxes and the APF and retarded by frictional drag. The undercurrent acceleration may manifest as eddy momentum fluxes or as topographic form stress depending on the coordinate system used to compute the momentum budget, which reconciles these findings with previous work that linked eddy acceleration of the undercurrent to topographic form stress. The leading-order momentum balance motivates a scaling for the strength of the undercurrent that explains most of the variance across the simulations. These findings indicate that eddy rectification is of comparable importance to the APF in driving poleward undercurrents in EBUSs and motivate further work to diagnose this effect in high-resolution models and observations and to parameterize it in coarse-resolution ocean/climate models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew L. Stewart, astewart@atmos.ucla.edu
Save
  • Aiki, H., X. Zhai, and R. J. Greatbatch, 2016: Energetics of the global ocean: The role of mesoscale eddies. Indo-Pacific Climate Variability and Predictability, S. Behera and T. Yamagata, Eds., World Scientific, 109–134.

  • Bai, Y., Y. Wang, and A. L. Stewart, 2021: Does topographic form stress impede prograde ocean currents? J. Phys. Oceanogr., 51, 26172638, https://doi.org/10.1175/JPO-D-20-0189.1.

    • Search Google Scholar
    • Export Citation
  • Barton, E. D., 1989: The poleward undercurrent on the eastern boundary of the subtropical North Atlantic. Poleward Flows along Eastern Ocean Boundaries, S. Neshyba et al., Eds., Coastal and Estuarine Studies, Vol. 34, Springer, 82–95.

  • Bire, S., and C. L. P. Wolfe, 2018: The role of eddies in buoyancy-driven eastern boundary currents. J. Phys. Oceanogr., 48, 28292850, https://doi.org/10.1175/JPO-D-18-0040.1.

    • Search Google Scholar
    • Export Citation
  • Bograd, S. J., and Coauthors, 2023: Climate change impacts on eastern boundary upwelling systems. Annu. Rev. Mar. Sci., 15, 303328, https://doi.org/10.1146/annurev-marine-032122-021945.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., and D. B. Haidvogel, 1976: Two-dimensional turbulence above topography. J. Fluid Mech., 78, 129154, https://doi.org/10.1017/S002211207600236X.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1991: Coastal-trapped waves and wind-driven currents over the continental shelf. Annu. Rev. Fluid Mech., 23, 389412, https://doi.org/10.1146/annurev.fl.23.010191.002133.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2010: Topographic rectification in a forced, dissipative, barotropic ocean. J. Mar. Res., 68, 337368, https://doi.org/10.1357/002224010794657209.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2011: Topographic rectification in a stratified ocean. J. Mar. Res., 69, 483499, https://doi.org/10.1357/002224011799849354.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., and C. L. Wolfe, 2013: Adiabatic eastern boundary currents. J. Phys. Oceanogr., 43, 11271149, https://doi.org/10.1175/JPO-D-12-0211.1.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., N. Dominguez, G. Eldin, L. Vasquez, R. Flores, C. Grados, and V. Echevin, 2013: Near-coastal circulation in the Northern Humboldt Current System from shipboard ADCP data. J. Geophys. Res. Oceans, 118, 52515266, https://doi.org/10.1002/jgrc.20328.

    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., and M. Messié, 2009: A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr., 83, 8096, https://doi.org/10.1016/j.pocean.2009.07.032.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, R., J. C. McWilliams, and L. Renault, 2021: Momentum governors of California undercurrent transport. J. Phys. Oceanogr., 51, 29152932, https://doi.org/10.1175/JPO-D-20-0234.1.

    • Search Google Scholar
    • Export Citation
  • Chenillat, F., P. Rivière, X. Capet, P. J. S. Franks, and B. Blanke, 2013: California coastal upwelling onset variability: Cross-shore and bottom-up propagation in the planktonic ecosystem. PLOS ONE, 8, e62281, https://doi.org/10.1371/journal.pone.0062281.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1989: Theoretical understanding of eastern ocean boundary poleward undercurrents. Poleward Flows along Eastern Ocean Boundaries, S. J. Neshyba et al., Eds., Springer, 26–39.

  • Colas, F., X. Capet, J. C. McWilliams, and Z. Li, 2013: Mesoscale eddy buoyancy flux and eddy-induced circulation in eastern boundary currents. J. Phys. Oceanogr., 43, 10731095, https://doi.org/10.1175/JPO-D-11-0241.1.

    • Search Google Scholar
    • Export Citation
  • Connolly, T. P., B. M. Hickey, I. Shulman, and R. E. Thomson, 2014: Coastal trapped waves, alongshore pressure gradients, and the California undercurrent. J. Phys. Oceanogr., 44, 319342, https://doi.org/10.1175/JPO-D-13-095.1.

    • Search Google Scholar
    • Export Citation
  • De Verdiere, A. C., 1979: Mean flow generation by topographic Rossby waves. J. Fluid Mech., 94, 3964, https://doi.org/10.1017/S0022112079000938.

    • Search Google Scholar
    • Export Citation
  • Frenger, I., D. Bianchi, C. Stührenberg, A. Oschlies, J. Dunne, C. Deutsch, E. Galbraith, and F. Schütte, 2018: Biogeochemical role of subsurface coherent eddies in the ocean: Tracer cannonballs, hypoxic storms, and microbial stewpots? Global Biogeochem. Cycles, 32, 226249, https://doi.org/10.1002/2017GB005743.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and R. W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 29352946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and K. H. Brink, 1986: Mean currents driven by topographic drag over the continental shelf and slope. J. Phys. Oceanogr., 16, 21592171, https://doi.org/10.1175/1520-0485(1986)016<2159:MCDBTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1979: The California Current System—Hypotheses and facts. Prog. Oceanogr., 8, 191279, https://doi.org/10.1016/0079-6611(79)90002-8.

    • Search Google Scholar
    • Export Citation
  • Hill, A. E., B. M Hickey, F. A. Shillington, P. T. Strub, K. H. Brink, E. D. Barton, and A.C. Thomas, 1998: Eastern ocean boundaries: Coastal segment (E). The Global Coastal Ocean: Regional Studies and Syntheses, A. R. Robinson and K. H. Brink, Eds., The Sea: Ideas and Observations on Progress in the Study of the Seas, Vol. 11, John Wiley & Sons, 29–68.

  • Holloway, G., 1987: Systematic forcing of large-scale geophysical flows by eddy-topography interaction. J. Fluid Mech., 184, 463476, https://doi.org/10.1017/S0022112087002970.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1992: Representing topographic stress for large-scale ocean models. J. Phys. Oceanogr., 22, 10331046, https://doi.org/10.1175/1520-0485(1992)022<1033:RTSFLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., K. Brink, and D. Haidvogel, 1989: Topographic stress in coastal circulation dynamics. Poleward Flows along Eastern Ocean Boundaries, S. J. Neshyba et al., Eds., Coastal and Estuarine Studies, Vol. 34, Springer, 315–330.

  • Huthnance, J. M., 1973: Tidal current asymmetries over the Norfolk sandbanks. Estuarine Coastal Mar. Sci., 1, 8999, https://doi.org/10.1016/0302-3524(73)90061-3.

    • Search Google Scholar
    • Export Citation
  • Huyer, A., 1976: A comparison of upwelling events in two locations: Oregon and northwest Africa. J. Mar. Res., 34, 532546.

  • Jacox, M. G., and C. A. Edwards, 2012: Upwelling source depth in the presence of nearshore wind stress curl. J. Geophys. Res., 117, C05008, https://doi.org/10.1029/2011JC007856.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., 1998: Open boundary conditions in stratified ocean models. J. Mar. Syst., 16, 297322, https://doi.org/10.1016/S0924-7963(97)00023-7.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, https://doi.org/10.1016/0198-0149(89)90017-4.

    • Search Google Scholar
    • Export Citation
  • Khatri, H., S. M. Griffies, B. A. Storer, M. Buzzicotti, H. Aluie, M. Sonnewald, R. Dussin, and A. E. Shao, 2024: A scale-dependent analysis of the barotropic vorticity budget in a global ocean simulation. J. Adv. Model. Earth Syst., 16, e2023MS003813, https://doi.org/10.1029/2023MS003813.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lathuilière, C., V. Echevin, M. Lévy, and G. Madec, 2010: On the role of the mesoscale circulation on an idealized coastal upwelling ecosystem. J. Geophys. Res., 115, C09018, https://doi.org/10.1029/2009JC005827.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and D. C. Chapman, 2004: The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr., 34, 24442457, https://doi.org/10.1175/JPO2644.1.

    • Search Google Scholar
    • Export Citation
  • Li, D., and X. Ruan, 2024: On the pathways of wind-driven coastal upwelling: Nonlinear momentum flux and baroclinic instability. J. Phys. Oceanogr., 54, 6379, https://doi.org/10.1175/JPO-D-23-0098.1.

    • Search Google Scholar
    • Export Citation
  • Loder, J. W., 1980: Topographic rectification of tidal currents on the sides of Georges Bank. J. Phys. Oceanogr., 10, 13991416, https://doi.org/10.1175/1520-0485(1980)010<1399:TROTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mak, J., J. R. Maddison, D. P. Marshall, and D. R. Munday, 2018: Implementation of a geometrically informed and energetically constrained mesoscale eddy parameterization in an ocean circulation model. J. Phys. Oceanogr., 48, 23632382, https://doi.org/10.1175/JPO-D-18-0017.1.

    • Search Google Scholar
    • Export Citation
  • Mak, J., D. P. Marshall, G. Madec, and J. R. Maddison, 2022: Acute sensitivity of global ocean circulation and heat content to eddy energy dissipation timescale. Geophys. Res. Lett., 49, e2021GL097259, https://doi.org/10.1029/2021GL097259.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M., and G. Holloway, 2008: Implementing biharmonic Neptune in a global eddying ocean model. Ocean Modell., 21, 2234, https://doi.org/10.1016/j.ocemod.2007.11.003.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and H. R. Pillar, 2011: Momentum balance of the wind-driven and meridional overturning circulation. J. Phys. Oceanogr., 41, 960978, https://doi.org/10.1175/2011JPO4528.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557, https://doi.org/10.1175/JPO-D-11-048.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., M. H. P. Ambaum, J. R. Maddison, D. R. Munday, and L. Novak, 2017: Eddy saturation and frictional control of the Antarctic Circumpolar Current. Geophys. Res. Lett., 44, 286292, https://doi.org/10.1002/2016GL071702.

    • Search Google Scholar
    • Export Citation
  • McCoy, D., D. Bianchi, and A. L. Stewart, 2020: Global observations of submesoscale coherent vortices in the ocean. Prog. Oceanogr., 189, 102452, https://doi.org/10.1016/j.pocean.2020.102452.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981a: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc., 298A, 603635, https://doi.org/10.1016/j.pocean.2020.102452.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981b: A linear stratified ocean model of the coastal undercurrent. Philos. Trans. Roy. Soc., 302A, 385413, https://doi.org/10.1098/rsta.1981.0176.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and G. Holloway, 1999: Eddy fluxes and topography in stratified quasi-geostrophic models. J. Fluid Mech., 380, 5980, https://doi.org/10.1017/S0022112098003656.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., P. F. Cummins, and G. Holloway, 2001: Equilibrium statistical mechanics of barotropic flow over finite topography. J. Phys. Oceanogr., 31, 18801890, https://doi.org/10.1175/1520-0485(2001)031<1880:ESMOBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohrholz, V., C. H. Bartholomae, A. K. van der Plas, and H. U. Lass, 2008: The seasonal variability of the northern Benguela undercurrent and its relation to the oxygen budget on the shelf. Cont. Shelf Res., 28, 424441, https://doi.org/10.1016/j.csr.2007.10.001.

    • Search Google Scholar
    • Export Citation
  • Moscoso, J. E., A. L. Stewart, D. Bianchi, and J. C. McWilliams, 2021: The Meridionally Averaged Model of Eastern Boundary Upwelling Systems (MAMEBUSv1.0). Geosci. Model Dev., 14, 763794, https://doi.org/10.5194/gmd-14-763-2021.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3A, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Search Google Scholar
    • Export Citation
  • Nelson, C. S., 1977: Wind stress and wind stress curl over the California current. NOAA Tech. Rep. NMFS SSRF-714, 87 pp.

  • Pedlosky, J., 1974: Longshore currents, upwelling and bottom topography. J. Phys. Oceanogr., 4, 214226, https://doi.org/10.1175/1520-0485(1974)004<0214:LCUABT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pelland, N. A., C. C. Eriksen, and C. M. Lee, 2013: Subthermocline eddies over the Washington continental slope as observed by Seagliders, 2003–09. J. Phys. Oceanogr., 43, 20252053, https://doi.org/10.1175/JPO-D-12-086.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1980: The equatorial undercurrent revisited. Annu. Rev. Earth Planet. Sci., 8, 191204, https://doi.org/10.1146/annurev.ea.08.050180.001203.

    • Search Google Scholar
    • Export Citation
  • Pierce, S. D., R. L. Smith, P. M. Kosro, J. A. Barth, and C. D. Wilson, 2000: Continuity of the poleward undercurrent along the eastern boundary of the mid-latitude North Pacific. Deep-Sea Res. II, 47, 811829, https://doi.org/10.1016/S0967-0645(99)00128-9.

    • Search Google Scholar
    • Export Citation
  • Poulain, P.-M., and L. Centurioni, 2015: Direct measurements of world ocean tidal currents with surface drifters. J. Geophys. Res. Oceans, 120, 69867003, https://doi.org/10.1002/2015JC010818.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, C12032, https://doi.org/10.1029/2003JC002226.

    • Search Google Scholar
    • Export Citation
  • Roach, C. J., D. Balwada, and K. Speer, 2018: Global observations of horizontal mixing from Argo float and surface drifter trajectories. J. Geophys. Res. Oceans, 123, 45604575, https://doi.org/10.1029/2018JC013750.

    • Search Google Scholar
    • Export Citation
  • Ryther, J. H., 1969: Photosynthesis and fish production in the sea: The production of organic matter and its conversion to higher forms of life vary throughout the world ocean. Science, 166, 7276, https://doi.org/10.1126/science.166.3901.72.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 2002: Numerical solution of the two-layer shallow water equations with bottom topography. J. Mar. Res., 60, 605638, https://doi.org/10.1357/002224002762324194.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 2017: Time-dependent linear theory for the generation of poleward undercurrents on eastern boundaries. J. Phys. Oceanogr., 47, 30373059, https://doi.org/10.1175/JPO-D-17-0077.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and J. S. Allen, 1987: Quasi-geostrophic topographically generated mean flow over the continental margin. J. Phys. Oceanogr., 17, 20432064, https://doi.org/10.1175/1520-0485(1987)017<2043:QGTGMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwiderski, E. W., 1980: On charting global ocean tides. Rev. Geophys., 18, 243268, https://doi.org/10.1029/RG018i001p00243.

  • Stewart, A. L., and P. J. Dellar, 2016: An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force. J. Comput. Phys., 313, 99120, https://doi.org/10.1016/j.jcp.2015.12.042.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2019: Acceleration and overturning of the Antarctic slope current by winds, eddies, and tides. J. Phys. Oceanogr., 49, 20432074, https://doi.org/10.1175/JPO-D-18-0221.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., J. C. McWilliams, and A. Solodoch, 2021: On the role of bottom pressure torques in wind-driven gyres. J. Phys. Oceanogr., 51, 14411464, https://doi.org/10.1175/JPO-D-20-0147.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., N. K. Neumann, and A. Solodoch, 2023: “Eddy” saturation of the Antarctic Circumpolar Current by standing waves. J. Phys. Oceanogr., 53, 11611181, https://doi.org/10.1175/JPO-D-22-0154.1.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., and C. James, 2000: Altimeter-derived variability of surface velocities in the California Current System: 2. Seasonal circulation and eddy statistics. Deep-Sea Res. II, 47, 831870, https://doi.org/10.1016/S0967-0645(99)00129-0.

    • Search Google Scholar
    • Export Citation
  • Suginohara, N., 1982: Coastal upwelling: Onshore–offshore circulation, equatorward coastal jet and poleward undercurrent over a continental shelf-slope. J. Phys. Oceanogr., 12, 272284, https://doi.org/10.1175/1520-0485(1982)012<0272:CUOCEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Search Google Scholar
    • Export Citation
  • Tamarin, T., J. R. Maddison, E. Heifetz, and D. P. Marshall, 2016: A geometric interpretation of eddy Reynolds stresses in barotropic ocean jets. J. Phys. Oceanogr., 46, 22852307, https://doi.org/10.1175/JPO-D-15-0139.1.

    • Search Google Scholar
    • Export Citation
  • Thomsen, S., X. Capet, and V. Echevin, 2021: Competition between baroclinic instability and Ekman transport under varying buoyancy forcings in upwelling systems: An idealized analog to the Southern Ocean. J. Phys. Oceanogr., 51, 33473364, https://doi.org/10.1175/JPO-D-20-0294.1.

    • Search Google Scholar
    • Export Citation
  • Towns, J., and Coauthors, 2014: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng., 16, 6274, https://doi.org/10.1109/MCSE.2014.80.

    • Search Google Scholar
    • Export Citation
  • Uhlenbeck, G. E., and L. S. Ornstein, 1930: On the theory of the Brownian motion. Phys. Rev., 36, 823841, https://doi.org/10.1103/PhysRev.36.823.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and A. L. Stewart, 2018: Eddy dynamics over continental slopes under retrograde winds: Insights from a model inter-comparison. Ocean Modell., 121, 118, https://doi.org/10.1016/j.ocemod.2017.11.006.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and A. L. Stewart, 2020: Scalings for eddy buoyancy transfer across continental slopes under retrograde winds. Ocean Modell., 147, 101579, https://doi.org/10.1016/j.ocemod.2020.101579.

    • Search Google Scholar
    • Export Citation
  • Wei, H., Y. Wang, A. L. Stewart, and J. Mak, 2022: Scalings for eddy buoyancy fluxes across prograde shelf/slope fronts. J. Adv. Model. Earth Syst., 14, e2022MS003229, https://doi.org/10.1029/2022MS003229.

    • Search Google Scholar
    • Export Citation
  • Werner, F. E., and B. M. Hickey, 1983: The role of a longshore pressure gradient in Pacific northwest coastal dynamics. J. Phys. Oceanogr., 13, 395410, https://doi.org/10.1175/1520-0485(1983)013<0395:TROALP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, X., E. Tziperman, and K. Speer, 2020: Deep eastern boundary currents: Realistic simulations and vorticity budgets. J. Phys. Oceanogr., 50, 30773094, https://doi.org/10.1175/JPO-D-20-0002.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., E. Tziperman, and K. Speer, 2021: Deep eastern boundary currents: Idealized models and dynamics. J. Phys. Oceanogr., 51, 9891005, https://doi.org/10.1175/JPO-D-20-0227.1.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, K. X., A. L. Stewart, and J. C. McWilliams, 2019: Sill-influenced exchange flows in ice shelf cavities. J. Phys. Oceanogr., 49, 163191, https://doi.org/10.1175/JPO-D-18-0076.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1078 1078 154
Full Text Views 141 141 28
PDF Downloads 203 203 37