Intrusions and Turbulent Mixing above a Small Eastern Mediterranean Seafloor Slope

Hans van Haren aRoyal Netherlands Institute for Sea Research (NIOZ), Den Burg, Netherlands

Search for other papers by Hans van Haren in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8041-8121
Restricted access

Abstract

Growing evidence is found in observations and numerical modeling of the importance of steep seafloor topography for turbulent diapycnal mixing leading to redistribution of suspended matter and nutrients, especially in waters with abundant internal tides. One of the remaining questions is the extent of turbulent mixing away from and above nearly flat topography, which is addressed in this paper. Evaluated are observations from an opportunistic, weeklong mooring of high-resolution temperature sensors above a small seafloor slope in about 1200-m water depth of the eastern Mediterranean. The environment has weak tides, so that near-inertial motions and near-inertial shear dominate internal waves. Vertical displacement shapes suggest instabilities to represent locally generated turbulent overturns, rather than partial salinity-compensated intrusions dispersed isopycnally from turbulence near the slope. This conclusion is supported by the duration of instabilities, as all individual overturns last shorter than the mean buoyancy period and sequences of overturns last shorter than the local inertial period. The displacement shapes are more erratic than observed in stronger stratified waters in which shear drives turbulence and better correspond with predominantly buoyancy-driven convection turbulence. This convection turbulence is confirmed from spectral information, generally occurring dominant close to the seafloor and only in weakly stratified layers well above it. Mean turbulence values are 10–100 times smaller than those found above steep ocean topography, but 10 times larger than those found in the open-ocean interior.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hans van Haren, hans.van.haren@nioz.nl

Abstract

Growing evidence is found in observations and numerical modeling of the importance of steep seafloor topography for turbulent diapycnal mixing leading to redistribution of suspended matter and nutrients, especially in waters with abundant internal tides. One of the remaining questions is the extent of turbulent mixing away from and above nearly flat topography, which is addressed in this paper. Evaluated are observations from an opportunistic, weeklong mooring of high-resolution temperature sensors above a small seafloor slope in about 1200-m water depth of the eastern Mediterranean. The environment has weak tides, so that near-inertial motions and near-inertial shear dominate internal waves. Vertical displacement shapes suggest instabilities to represent locally generated turbulent overturns, rather than partial salinity-compensated intrusions dispersed isopycnally from turbulence near the slope. This conclusion is supported by the duration of instabilities, as all individual overturns last shorter than the mean buoyancy period and sequences of overturns last shorter than the local inertial period. The displacement shapes are more erratic than observed in stronger stratified waters in which shear drives turbulence and better correspond with predominantly buoyancy-driven convection turbulence. This convection turbulence is confirmed from spectral information, generally occurring dominant close to the seafloor and only in weakly stratified layers well above it. Mean turbulence values are 10–100 times smaller than those found above steep ocean topography, but 10 times larger than those found in the open-ocean interior.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hans van Haren, hans.van.haren@nioz.nl
Save
  • Armi, L., 1979: Effects of variations in eddy diffusivity on property distributions in the oceans. J. Mar. Res., 37, 515530, https://doi.org/10.1575/1912/10336.

    • Search Google Scholar
    • Export Citation
  • Bolgiano, R., Jr., 1959: Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res., 64, 22262229, https://doi.org/10.1029/JZ064i012p02226.

    • Search Google Scholar
    • Export Citation
  • Cyr, F., and H. van Haren, 2016: Observations of small-scale secondary instabilities during the shoaling of internal bores on a deep-ocean slope. J. Phys. Oceanogr., 46, 219231, https://doi.org/10.1175/JPO-D-15-0059.1.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, https://doi.org/10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Dougherty, J. P., 1961: The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys., 21, 210213, https://doi.org/10.1016/0021-9169(61)90116-7.

    • Search Google Scholar
    • Export Citation
  • Fjørtoft, R., 1953: On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow. Tellus, 5A, 225230, https://doi.org/10.3402/tellusa.v5i3.8647.

    • Search Google Scholar
    • Export Citation
  • Galbraith, P. S., and D. E. Kelley, 1996: Identifying overturns in CTD profiles. J. Atmos. Oceanic Technol., 13, 688702, https://doi.org/10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., P. J. Hendricks, T. B. Sanford, T. R. Osborn, and A. J. Williams, 1981: A composite spectrum of vertical shear in the upper ocean. J. Phys. Oceanogr., 11, 12581271, https://doi.org/10.1175/1520-0485(1981)011<1258:ACSOVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1982: On the parameterization of diapycnal fluxes due to double-diffusive intrusions. J. Phys. Oceanogr., 12, 952959, https://doi.org/10.1175/1520-0485(1982)012<0952:OTPODF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., J. T. F. Zimmerman, L. R. M. Maas, and H. van Haren, 2008: Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys., 46, RG2004, https://doi.org/10.1029/2006RG000220.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. A. D’Asaro, J. J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Search Google Scholar
    • Export Citation
  • Intergovernmental Oceanographic Commission, SCOR, and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 218 pp., http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.

  • Kamenkovich, I., P. Berloff, M. Haigh, L. Sun, and Y. Lu, 2021: Complexity of mesoscale eddy diffusivity in the ocean. Geophys. Res. Lett., 48, e2020GL091719, https://doi.org/10.1029/2020GL091719.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, https://doi.org/10.1175/2007JPO3728.1.

    • Search Google Scholar
    • Export Citation
  • LeBlond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier, 602 pp.

  • Li, S., and H. Li, 2006: Parallel AMR code for compressible MHD or HD equations. Los Alamos National Laboratory T-7, MS B284, 2 pp., https://citeseerx.ist.psu.edu/pdf/03e1663486594ce991cc4bbdffa031dbbeb3ab33.

  • Malila, M. P., J. Thomson, Ø. Breivik, A. Benetazzo, B. Scanlon, and B. Ward, 2022: On the groupiness and intermittency of oceanic whitecaps. J. Geophys. Res. Ocean, 127, e2021JC017938, https://doi.org/10.1029/2021JC017938.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37 (1), 164, https://doi.org/10.1029/98RG02739.

    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. K. Venayagamoorthy, L. St. Laurent, and J. N. Moum, 2015: Biases in Thorpe scale estimates of turbulent kinetic energy dissipation. Part I: Assessments from large-scale overturns in oceanographic data. J. Phys. Oceanogr., 45, 24972521, https://doi.org/10.1175/JPO-D-14-0128.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Nash, J. D., M. H. Alford, E. Kunze, K. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, https://doi.org/10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, https://doi.org/10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ozmidov, R. V., 1965: About some peculiarities of the energy spectrum of oceanic turbulence (in Russian). Dokl. Akad. Nauk SSSR, 161, 828831.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1991: Turbulent mixing near the Yermak Platea during the coordinated eastern Arctic experiment. J. Geophys. Res., 96, 47694782, https://doi.org/10.1029/90JC02260.

    • Search Google Scholar
    • Export Citation
  • Pawar, S. S., and J. H. Arakeri, 2016: Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence. Phys. Fluids, 28, 065103, https://doi.org/10.1063/1.4953858.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1971: On spectra measured in an undulating layered medium. J. Phys. Oceanogr., 1 (1), 16, https://doi.org/10.1175/1520-0485(1971)001<0001:OSMIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reid, R. O., 1971: A special case of Phillips’ general theory of sampling statistics for a layered medium. J. Phys. Oceanogr., 1, 6162.

    • Search Google Scholar
    • Export Citation
  • Szilagyi, J., G. G. Katul, M. B. Parlange, J. D. Albertson, and A. T. Cahill, 1996: The local effect of intermittency on the inertial subrange energy spectrum of the atmospheric surface layer. Bound.-Layer Meteor., 79, 3550, https://doi.org/10.1007/BF00120074.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. The MIT Press, 300 pp.

  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc., A286, 125181, https://doi.org/10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 458 pp.

  • Van Haren, H., 2018: Philosophy and application of high-resolution temperature sensors for stratified waters. Sensors, 18, 3184, https://doi.org/10.3390/s18103184.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2020: Slow persistent mixing in the abyss. Ocean Dyn., 70, 339352, https://doi.org/10.1007/s10236-019-01335-6.

  • van Haren, H., 2023a: KmT, detailing layered mixing governed by internal wave breaking. Environ. Fluid Mech., 23, 603620, https://doi.org/10.1007/s10652-023-09921-5.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2023b: Direct observations of general geothermal convection in deep Mediterranean waters. Ocean Dyn., 73, 807825, https://doi.org/10.1007/s10236-023-01585-5.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., and L. Gostiaux, 2012: Detailed internal wave mixing observed above a deep-ocean slope. J. Mar. Res., 70, 173197, https://doi.org/10.1357/002224012800502363.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., and L. Gostiaux, 2014: Characterizing turbulent overturns in CTD-data. Dyn. Atmos. Oceans, 66, 5876, https://doi.org/10.1016/j.dynatmoce.2014.02.001.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., and J. Greinert, 2016: Turbulent high-latitude oceanic intrusions – details of non-smooth apparent isopycnal transport West of Svalbard. Ocean Dyn., 66, 785794, https://doi.org/10.1007/s10236-016-0955-x.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., A. A. Cimatoribus, F. Cyr, and L. Gostiaux, 2016: Insights from a 3-D temperature sensors mooring on stratified ocean turbulence. Geophys. Res. Lett., 43, 44834489, https://doi.org/10.1002/2016GL068032.

    • Search Google Scholar
    • Export Citation
  • Warhaft, Z., 2000: Passive scalars in turbulent flows. Annu. Rev. Fluid Mech., 32, 203240, https://doi.org/10.1146/annurev.fluid.32.1.203.

    • Search Google Scholar
    • Export Citation
  • Weinstock, J., 1978: On the theory of turbulence in the buoyancy subrange of stably stratified flows. J. Atmos. Sci., 35, 634649, https://doi.org/10.1175/1520-0469(1978)035<0634:OTTOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., 2015: Tidally driven mixing and dissipation in the stratified boundary layer above steep submarine topography. Geophys. Res. Lett., 42, 71237130, https://doi.org/10.1002/2015GL064676.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1981: Low-frequency variability of the sea. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 342–374.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Zimmerman, J. T. F., 1986: The tidal whirlpool: A review of horizontal dispersion by tidal and residual currents. Neth. J. Sea Res., 20, 133154, https://doi.org/10.1016/0077-7579(86)90037-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 336 336 61
Full Text Views 98 98 17
PDF Downloads 130 130 28