Scaling and Flow Structure of Langmuir Turbulence in Inertial Frames

Yun Chang aDepartment of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Yun Chang in
Current site
Google Scholar
PubMed
Close
and
Alberto Scotti bSchool for Engineering of Matter, Transport and Energy, ASU, Tempe, Arizona

Search for other papers by Alberto Scotti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper provides a framework that unifies the characteristics of Langmuir turbulence, including the vortex force effect, velocity scalings, vertical flow structure, and crosswind spacing between surface streaks. The widely accepted CL2 mechanism is extended to explain the observed maximum alongwind velocity and downwelling velocity below the surface. Balancing the extended mechanism in the Craik–Leibovich equations, the scalings for the alongwind velocity u, crosswind velocity υ, and vertical velocity w are formulated as U=UfLa2/3andV=W=(Uf2Us)1/3. Here, Uf is the friction velocity, Us is the Stokes drift on the surface, and La = (Uf/Us)1/2 is the Langmuir number. Simulations using the Stratified Ocean Model with Adaptive Refinement in large-eddy simulation (LES-SOMAR) mode validate the scalings and reveal physical similarity for velocity and crosswind spacing. The horizontally averaged velocity along the wind u¯/U on the surface grows with time, whereas υ/V and w/W are confined. The root-mean-square (rms) of w peaks at wrms/W ≈ 0.85 at a depth of 1.3Zs, where Zs is the e-folding scale of the Stokes drift. The crosswind spacing Lp grows linearly with time but is finally limited by the depth of the water H, with maximum Lp/H = 3.3. This framework agrees with measurement collected in six different field campaigns.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yun Chang, yun.chang@whoi.edu

Abstract

This paper provides a framework that unifies the characteristics of Langmuir turbulence, including the vortex force effect, velocity scalings, vertical flow structure, and crosswind spacing between surface streaks. The widely accepted CL2 mechanism is extended to explain the observed maximum alongwind velocity and downwelling velocity below the surface. Balancing the extended mechanism in the Craik–Leibovich equations, the scalings for the alongwind velocity u, crosswind velocity υ, and vertical velocity w are formulated as U=UfLa2/3andV=W=(Uf2Us)1/3. Here, Uf is the friction velocity, Us is the Stokes drift on the surface, and La = (Uf/Us)1/2 is the Langmuir number. Simulations using the Stratified Ocean Model with Adaptive Refinement in large-eddy simulation (LES-SOMAR) mode validate the scalings and reveal physical similarity for velocity and crosswind spacing. The horizontally averaged velocity along the wind u¯/U on the surface grows with time, whereas υ/V and w/W are confined. The root-mean-square (rms) of w peaks at wrms/W ≈ 0.85 at a depth of 1.3Zs, where Zs is the e-folding scale of the Stokes drift. The crosswind spacing Lp grows linearly with time but is finally limited by the depth of the water H, with maximum Lp/H = 3.3. This framework agrees with measurement collected in six different field campaigns.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yun Chang, yun.chang@whoi.edu
Save
  • Alves, J. H. G. M., M. L. Banner, and I. R. Young, 2003: Revisiting the Pierson–Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr., 33, 13011323, https://doi.org/10.1175/1520-0485(2003)033<1301:RTPALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., and K. H. Christensen, 2020: A combined stokes drift profile under swell and wind sea. J. Phys. Oceanogr., 50, 28192833, https://doi.org/10.1175/JPO-D-20-0087.1.

    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., J.-R. Bidlot, and P. A. E. M. Janssen, 2016: A stokes drift approximation based on the Phillips spectrum. Ocean Modell., 100, 4956, https://doi.org/10.1016/j.ocemod.2016.01.005.

    • Search Google Scholar
    • Export Citation
  • Chalamalla, V. K., E. Santilli, A. Scotti, M. Jalali, and S. Sarkar, 2017: SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows. Ocean Modell., 120, 101119, https://doi.org/10.1016/j.ocemod.2017.11.003.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., 1977: The generation of Langmuir circulations by an instability mechanism. J. Fluid Mech., 81, 209223, https://doi.org/10.1017/S0022112077001980.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 35303537, https://doi.org/10.1175/1520-0485(2002)031<3530:TVKEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, https://doi.org/10.1146/annurev-marine-010213-135138.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and G. T. Dairiki, 1997: Turbulence intensity measurements in a wind-driven mixed layer. J. Phys. Oceanogr., 27, 20092022, https://doi.org/10.1175/1520-0485(1997)027<2009:TIMIAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ducros, F., P. Comte, and M. Lesieur, 1996: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech., 326, 136, https://doi.org/10.1017/S0022112096008221.

    • Search Google Scholar
    • Export Citation
  • Faller, A. J., 1971: Oceanic turbulence and the Langmuir circulations. Annu. Rev. Ecol. Evol. Syst., 2, 201236, https://doi.org/10.1146/annurev.es.02.110171.001221.

    • Search Google Scholar
    • Export Citation
  • Faller, A. J., and E. A. Caponi, 1978: Laboratory studies of wind-driven Langmuir circulations. J. Geophys. Res., 83, 36173633, https://doi.org/10.1029/JC083iC07p03617.

    • Search Google Scholar
    • Export Citation
  • Gargett, A., J. Wells, A. E. Tejada-Martínez, and C. E. Grosch, 2004: Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science, 306, 19251928, https://doi.org/10.1126/science.1100849.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and J. R. Wells, 2007: Langmuir turbulence in shallow water. Part 1. Observations. J. Fluid Mech., 576, 2761, https://doi.org/10.1017/S0022112006004575.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, https://doi.org/10.1175/2009JPO4119.1.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, https://doi.org/10.1029/JC074i028p06991.

  • Kukulka, T., and R. R. Harcourt, 2017: Influence of stokes drift decay scale on Langmuir turbulence. J. Phys. Oceanogr., 47, 16371656, https://doi.org/10.1175/JPO-D-16-0244.1.

    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123, https://doi.org/10.1126/science.87.2250.119.

  • Large, W. G., E. G. Patton, and P. P. Sullivan, 2019: Nonlocal transport and implied viscosity and diffusivity throughout the boundary layer in LES of the Southern Ocean with surface waves. J. Phys. Oceanogr., 49, 26312652, https://doi.org/10.1175/JPO-D-18-0202.1.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1977: Convective instability of stably stratified water in the ocean. J. Fluid Mech., 82, 561581, https://doi.org/10.1017/S0022112077000846.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, https://doi.org/10.1146/annurev.fl.15.010183.002135.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.

  • Pierson, W. J., Jr., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, https://doi.org/10.1029/JZ069i024p05181.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., J. A. Smith, D. M. Farmer, R. A. Weller, W. R. Crawford, R. Pinkel, S. Vagle, and A. Gnanadesikan, 1996: Structure and variability of Langmuir circulation during the surface waves processes program. J. Geophys. Res., 101, 35253543, https://doi.org/10.1029/95JC03282.

    • Search Google Scholar
    • Export Citation
  • Santilli, E., and A. Scotti, 2011: An efficient method for solving highly anisotropic elliptic equations. J. Comput. Phys., 230, 83428359, https://doi.org/10.1016/j.jcp.2011.06.022.

    • Search Google Scholar
    • Export Citation
  • Santilli, E., and A. Scotti, 2015: The Stratified Ocean Model with Adaptive Refinement (SOMAR). J. Comput. Phys., 291, 6081, https://doi.org/10.1016/j.jcp.2015.03.008.

    • Search Google Scholar
    • Export Citation
  • Savidge, D., and A. E. Gargett, 2017: Langmuir supercells on the middle shelf of the South Atlantic bight: 1. Cell structure. J. Mar. Res., 75, 4979, https://doi.org/10.1357/002224017821352641.

    • Search Google Scholar
    • Export Citation
  • Shrestha, K., W. Anderson, and J. Kuehl, 2018: Langmuir turbulence in coastal zones: Structure and length scales. J. Phys. Oceanogr., 48, 10891115, https://doi.org/10.1175/JPO-D-17-0067.1.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1992: Observed growth of Langmuir circulation. J. Geophys. Res., 97, 56515664, https://doi.org/10.1029/91JC03118.

  • Smith, J. A., 1996: Observations of Langmuir circulation, waves, and the mixed layer. The Air Sea Interface: Radio and Acoustic Sensing, Turbulence, and Wave Dynamics, M. A. Donelan, W. H. Hui, and W. J. Plant, Eds., University of Toronto Press, 613–622.

  • Smith, J. A., 1998: Evolution of Langmuir circulation during a storm. J. Geophys. Res., 103, 12 64912 668, https://doi.org/10.1029/97JC03611.

    • Search Google Scholar
    • Export Citation
  • Smith, J., R. Pinkel, and R. A. Weller, 1987: Velocity structure in the mixed layer during MILDEX. J. Phys. Oceanogr., 17, 425439, https://doi.org/10.1175/1520-0485(1987)017<0425:VSITML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, https://doi.org/10.1146/annurev-fluid-121108-145541.

    • Search Google Scholar
    • Export Citation
  • Tejada-Martínez, A. E., and C. E. Grosch, 2007: Langmuir turbulence in shallow water. Part 2. Large-eddy simulation. J. Fluid Mech., 576, 63108, https://doi.org/10.1017/S0022112006004587.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2004: Recent developments in the study of ocean turbulence. Annu. Rev. Earth Planet. Sci., 32, 91109, https://doi.org/10.1146/annurev.earth.32.071603.152635.

    • Search Google Scholar
    • Export Citation
  • Tseng, R.-S., and E. A. D’Asaro, 2004: Measurements of turbulent vertical kinetic energy in the ocean mixed layer from Lagrangian floats. J. Phys. Oceanogr., 34, 19841990, https://doi.org/10.1175/1520-0485(2004)034<1984:MOTVKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and J. F. Price, 1988: Langmuir circulation within the oceanic mixed layer. Deep-Sea Res., 35A, 711747, https://doi.org/10.1016/0198-0149(88)90027-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 312 312 37
Full Text Views 121 121 33
PDF Downloads 153 153 45