Near-Inertial Response of a Salinity-Stratified Ocean

Dipanjan Chaudhuri aCentre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India
bApplied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Dipanjan Chaudhuri in
Current site
Google Scholar
PubMed
Close
,
Debasis Sengupta aCentre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by Debasis Sengupta in
Current site
Google Scholar
PubMed
Close
,
Eric D’Asaro bApplied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Eric D’Asaro in
Current site
Google Scholar
PubMed
Close
,
J. Thomas Farrar cWoods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by J. Thomas Farrar in
Current site
Google Scholar
PubMed
Close
,
Manikandan Mathur dDepartment of Aerospace Engineering Indian Institute of Technology, Chennai, Tamil Nadu, India

Search for other papers by Manikandan Mathur in
Current site
Google Scholar
PubMed
Close
, and
Sundar Ranganathan eNational Institute of Ocean Technology, Chennai, India

Search for other papers by Sundar Ranganathan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We study the near-inertial response of the salinity-stratified north Bay of Bengal to monsoonal wind forcing using 6 years of hourly observations from four moorings. The mean annual energy input from surface winds to near-inertial mixed layer currents is 10–20 kJ m−2, occurring mainly in distinct synoptic “events” from April–September. A total of fifteen events are analyzed: Seven when the ocean is capped by a thin layer of low-salinity river water (fresh) and eight when it is not (salty). The average near-inertial energy input from winds is 40% higher in the fresh cases than in the salty cases. During the fresh events, 1) mixed layer near-inertial motions decay about two times faster and 2) near-inertial kinetic energy below the mixed layer is reduced by at least a factor of three relative to the salty cases. The near-inertial horizontal wavelength was measured for one fresh and one salty event; the fresh was about three times shorter initially. A linear model of near-inertial wave propagation tuned to these data reproduces 2); the thin (10 m) mixed layers during the fresh events excite high modes, which propagate more slowly than the low modes excited by the thicker (40 m) mixed layers in the salty events. The model does not reproduce 1); the rapid decay of the mixed layer inertial motions in the fresh events is not explained by the linear wave propagation at the resolved scales; a different and currently unknown set of processes is likely responsible.

Dipanjan Chaudhuri’s current affiliation: Applied Physics Laboratory, University of Washington, Seattle, Washington

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dipanjan Chaudhuri, dipadadachaudhuri@gmail.com

Abstract

We study the near-inertial response of the salinity-stratified north Bay of Bengal to monsoonal wind forcing using 6 years of hourly observations from four moorings. The mean annual energy input from surface winds to near-inertial mixed layer currents is 10–20 kJ m−2, occurring mainly in distinct synoptic “events” from April–September. A total of fifteen events are analyzed: Seven when the ocean is capped by a thin layer of low-salinity river water (fresh) and eight when it is not (salty). The average near-inertial energy input from winds is 40% higher in the fresh cases than in the salty cases. During the fresh events, 1) mixed layer near-inertial motions decay about two times faster and 2) near-inertial kinetic energy below the mixed layer is reduced by at least a factor of three relative to the salty cases. The near-inertial horizontal wavelength was measured for one fresh and one salty event; the fresh was about three times shorter initially. A linear model of near-inertial wave propagation tuned to these data reproduces 2); the thin (10 m) mixed layers during the fresh events excite high modes, which propagate more slowly than the low modes excited by the thicker (40 m) mixed layers in the salty events. The model does not reproduce 1); the rapid decay of the mixed layer inertial motions in the fresh events is not explained by the linear wave propagation at the resolved scales; a different and currently unknown set of processes is likely responsible.

Dipanjan Chaudhuri’s current affiliation: Applied Physics Laboratory, University of Washington, Seattle, Washington

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dipanjan Chaudhuri, dipadadachaudhuri@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 3.7736 MB)
Save
  • Alam, M. M., M. A. Hossain, and S. Shafee, 2003: Frequency of Bay of Bengal cyclonic storms and depressions crossing different coastal zones. Int. J. Climatol., 23, 11191125, https://doi.org/10.1002/joc.927.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003a: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, https://doi.org/10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003b: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2020: Revisiting near-inertial wind work: Slab models, relative stress, and mixed layer deepening. J. Phys. Oceanogr., 50, 31413156, https://doi.org/10.1175/JPO-D-20-0105.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Search Google Scholar
    • Export Citation
  • Chaitanya, A. V. S., and Coauthors, 2014: Salinity measurements collected by fishermen reveal a “river in the sea” flowing along the eastern coast of India. Bull. Amer. Meteor. Soc., 95, 18971908, https://doi.org/10.1175/BAMS-D-12-00243.1.

    • Search Google Scholar
    • Export Citation
  • Chaudhuri, D., D. Sengupta, E. D’Asaro, R. Venkatesan, and M. Ravichandran, 2019: Response of the salinity-stratified Bay of Bengal to Cyclone Phailin. J. Phys. Oceanogr., 49, 11211140, https://doi.org/10.1175/JPO-D-18-0051.1.

    • Search Google Scholar
    • Export Citation
  • Chaudhuri, D., D. Sengupta, E. D’Asaro, and S. Shivaprasad, 2021: Trapping of wind momentum in a salinity-stratified ocean. J. Geophys. Res. Oceans, 126, e2021JC017770, https://doi.org/10.1029/2021JC017770.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1995: Upper-ocean inertial currents forced by a strong storm. Part II: Modeling. J. Phys. Oceanogr., 25, 29372952, https://doi.org/10.1175/1520-0485(1995)025<2937:UOICFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. C. Eriksen, M. D. Levine, C. A. Paulson, P. Niiler, and P. Van Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936, https://doi.org/10.1175/1520-0485(1995)025<2909:UOICFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., and A. J. Plueddemann, 2019: On the factors driving upper-ocean salinity variability at the western edge of the eastern Pacific fresh pool. Oceanography, 32 (2), 3039, https://doi.org/10.5670/oceanog.2019.209.

    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, https://doi.org/10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31 429467, https://doi.org/10.1146/annurev.earth.31.100901.141251.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., K. Suprit, J. Chiranjivi, T. V. S. Udaya Bhaskar, M. Ravichandran, R. Venkat Shesu, and E. P. R. Rao, 2014: Observed oceanic response to tropical cyclone Jal from a moored buoy in the south-western Bay of Bengal. Ocean Dyn., 64, 325335, https://doi.org/10.1007/s10236-014-0689-6.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2012: South Asian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Springer, 21–72.

  • Goswami, B. N., R. S. Ajayamohan, P. K. Xavier, and D. Sengupta, 2003: Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys. Res. Lett., 30, 1431, https://doi.org/10.1029/2002GL016734.

    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., and J. H. Morison, 2021: Not just sea ice: Other factors important to near-inertial wave generation in the Arctic Ocean. Geophys. Res. Lett., 48, e2020GL090508, https://doi.org/10.1029/2020GL090508.

    • Search Google Scholar
    • Export Citation
  • Hebert, D., and J. N. Moum, 1994: Decay of a near-inertial wave. J. Phys. Oceanogr., 24, 23342351, https://doi.org/10.1175/1520-0485(1994)024<2334:DOANIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, https://doi.org/10.1029/JC091iC07p08487.

    • Search Google Scholar
    • Export Citation
  • Jampana, V., M. Ravichandran, L. Kantha, and H. Rahaman, 2019: Modeling slippery layers in the northern Bay of Bengal. Deep-Sea Res. II, 168, 104616, https://doi.org/10.1016/j.dsr2.2019.07.004.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, https://doi.org/10.1029/2005GL023289.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, https://doi.org/10.1175/JCLI-D-12-00181.1.

    • Search Google Scholar
    • Export Citation
  • Joseph, K. J., A. N. Balchand, P. V. Hareeshkumar, and G. Rajesh, 2007: Inertial oscillation forced by the September 1997 cyclone in the Bay of Bengal. Curr. Sci., 92, 790794.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and R. S. Ajayamohan, 2010: Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J. Climate, 23, 42854305, https://doi.org/10.1175/2010JCLI2953.1.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and R. E. Thomson, 1985: Inertial oscillations due to a moving front. J. Phys. Oceanogr., 15, 10761084, https://doi.org/10.1175/1520-0485(1985)015<1076:IODTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, https://doi.org/10.1029/JC080i015p01975.

    • Search Google Scholar
    • Export Citation
  • Levenberg, K., 1944: A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math., 2, 164168, https://doi.org/10.1090/qam/10666.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., and V. Zervakis, 1995: Near-inertial wave propagation into the pycnocline during ocean storms: Observations and model comparison. J. Phys. Oceanogr., 25, 28902908, https://doi.org/10.1175/1520-0485(1995)025<2890:NIWPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilliefors, H. W., 1967: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Amer. Stat. Assoc., 62, 399402, https://doi.org/10.1080/01621459.1967.10482916.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2016: A tale of two spicy seas. Oceanography, 29 (2), 5061, https://doi.org/10.5670/oceanog.2016.38.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., T. Paluszkiewicz, M. Ravichandran, D. Sengupta, and A. Tandon, 2016: Introduction to the special issue on the Bay of Bengal: From monsoons to mixing. Oceanography, 29 (2), 1417, https://doi.org/10.5670/oceanog.2016.34.

    • Search Google Scholar
    • Export Citation
  • Maneesha, K., V. S. N. Murty, M. Ravichandran, T. Lee, W. Yu, and M. J. McPhaden, 2012: Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila. Prog. Oceanogr., 106, 4961, https://doi.org/10.1016/j.pocean.2012.06.006.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., and F. Wentz, 2016: Remote Sensing Systems SMAP ocean surface salinities [level 2C, level 3 running 8–day, level 3 monthly], version 2.0 validated release. Remote Sensing Systems Santa Rosa, accessed 13 September 2016, https://doi.org/10.5067/SMP40-3SMCS.

  • Mickett, J. B., Y. L. Serra, M. F. Cronin, and M. H. Alford, 2010: Resonant forcing of mixed layer inertial motions by atmospheric easterly waves in the northeast tropical Pacific. J. Phys. Oceanogr., 40, 401416, https://doi.org/10.1175/2009JPO4276.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and J. D. Nash, 2009: Mixing measurements on an equatorial ocean mooring. J. Atmos. Oceanic Technol., 26, 317336, https://doi.org/10.1175/2008JTECHO617.1.

    • Search Google Scholar
    • Export Citation
  • Mukherjee, A., and Coauthors, 2013: Near-inertial currents off the East Coast of India. Cont. Shelf Res., 55, 2939, https://doi.org/10.1016/j.csr.2013.01.007.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., and S. C. Bhan, 2013: Monsoon 2012: A report. IMD met monograph: Synoptic meteorology 13/2013, 201 pp., https://www.tropmet.res.in/∼kolli/MOL/Monsoon/year2012/Monsoon-2012-NEW.pdf.

  • Pai, D. S., and S. C. Bhan, 2014: Monsoon 2013: A report. IMD met monograph: ESSO/IMD/SYNOPTIC MET/01-2014/15, 229 pp., https://www.tropmet.res.in/∼kolli/MOL/Monsoon/year2013/Monsoon-2013-NEW.pdf.

  • Pai, D. S., and S. C. Bhan, 2015: Monsoon 2014: A report. IMD met monograph: ESSO/IMD/SYNOPTIC MET/01-2015/17, 219 pp., https://www.tropmet.res.in/∼kolli/MOL/Monsoon/year2014/Monsoon-2014-NEW.pdf.

  • Pai, D. S., and S. C. Bhan, 2016: Monsoon 2015: A report. IMD met monograph: ESSO/IMD/SYNOPTIC MET/01-2016/20, 256 pp.

  • Pai, D. S., and S. C. Bhan, 2017: Monsoon 2016: A report. IMD met monograph: ESSO/IMD/SYNOPTIC MET/01-2017/21, 357 pp.

  • Papa, F., F. Durand, W. B. Rossow, A. Rahman, and S. K. Bala, 2010: Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008. J. Geophys. Res., 115, C12013, https://doi.org/10.1029/2009JC006075.

    • Search Google Scholar
    • Export Citation
  • Papa, F., S. K. Bala, R. K. Pandey, F. Durand, V. V. Gopalakrishna, A. Rahman, and W. B. Rossow, 2012: Ganga-Brahmaputra River discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal. J. Geophys. Res., 117, C11021, https://doi.org/10.1029/2012JC008158.

    • Search Google Scholar
    • Export Citation
  • Park, J. J., K. Kim, and R. W. Schmitt, 2009: Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. J. Geophys. Res., 114, C11010, https://doi.org/10.1029/2008JC005216.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., and J. T. Farrar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II, 53, 530, https://doi.org/10.1016/j.dsr2.2005.10.017.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard Jr., 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, https://doi.org/10.1016/0011-7471(70)90043-4.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., J. A. Smith, J. A. MacKinnon, and A. E. Tejada-Martínez, 2008: Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophys. Res. Lett., 35, L13602, https://doi.org/10.1029/2008GL033856.

    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., and Coauthors, 2018: Submesoscale processes at shallow salinity fronts in the Bay of Bengal: Observations during the winter monsoon. J. Phys. Oceanogr., 48, 479509, https://doi.org/10.1175/JPO-D-16-0283.1.

    • Search Google Scholar
    • Export Citation
  • Rimac, A., J.-S. von Storch, and C. Eden, 2016: The total energy flux leaving the ocean’s mixed layer. J. Phys. Oceanogr., 46, 18851900, https://doi.org/10.1175/JPO-D-15-0115.1.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., G. N. Bharath Raj, and S. S. C. Shenoi, 2006: Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean. Geophys. Res. Lett., 33, L22609, https://doi.org/10.1029/2006GL027573.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., G. N. Bharath Raj, M. Ravichandran, J. Sree Lekha, and F. Papa, 2016: Near-surface salinity and stratification in the North Bay of Bengal from moored observations. Geophys. Res. Lett., 43, 44484456, https://doi.org/10.1002/2016GL068339.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., and M. H. Alford, 2012: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25 (2), 3041, https://doi.org/10.5670/oceanog.2012.39.

    • Search Google Scholar
    • Export Citation
  • Sree Lekha, J., J. M. Buckley, A. Tandon, and D. Sengupta, 2018: Subseasonal dispersal of freshwater in the northern Bay of Bengal in the 2013 summer monsoon season. J. Geophys. Res. Oceans, 123, 63306348, https://doi.org/10.1029/2018JC014181.

    • Search Google Scholar
    • Export Citation
  • Thakur, R., E. L. Shroyer, R. Govindarajan, J. T. Farrar, R. A. Weller, and J. N. Moum, 2019: Seasonality and buoyancy suppression of turbulence in the Bay of Bengal. Geophys. Res. Lett., 46, 43464355, https://doi.org/10.1029/2018GL081577.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., L. Rainville, O. Asselin, W. R. Young, J. Girton, C. B. Whalen, L. Centurioni, and V. Hormann, 2020: Direct observations of near-inertial wave ζ-refraction in a dipole vortex. Geophys. Res. Lett., 47, e2020GL090375, https://doi.org/10.1029/2020GL090375.

    • Search Google Scholar
    • Export Citation
  • Tyagi, A., and D. S. Pai, 2012: Monsoon 2011: A report. IMD met monograph: Synoptic meteorology 13/2012, 181 pp.

  • Tzortzi, E., S. A. Josey, M. Srokosz, and C. Gommenginger, 2013: Tropical Atlantic salinity variability: New insights from SMOS. Geophys. Res. Lett., 40, 21432147, https://doi.org/10.1002/grl.50225.

    • Search Google Scholar
    • Export Citation
  • van Meurs, P., 1998: Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. J. Phys. Oceanogr., 28, 13631388, https://doi.org/10.1175/1520-0485(1998)028<1363:IBNIML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Venkatesan, R., V. R. Shamji, G. Latha, S. Mathew, R. R. Rao, A. Muthiah, and M. A. Atmanand, 2013: In situ ocean subsurface time-series measurements from OMNI buoy network in the Bay of Bengal. Curr. Sci., 104, 11661177.

    • Search Google Scholar
    • Export Citation
  • Venkatesan, R., and Coauthors, 2014: Signatures of very severe cyclonic storm Phailin in met–ocean parameters observed by moored buoy network in the Bay of Bengal. Curr. Sci., 107, 588595.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., 1982: The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr., 12, 11221136, https://doi.org/10.1175/1520-0485(1982)012<1122:TRONIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and A. J. Plueddemann, 1996: Observations of the vertical structure of the oceanic boundary layer. J. Geophys. Res., 101, 87898806, https://doi.org/10.1029/96JC00206.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and Coauthors, 2016: Air-sea interaction in the Bay of Bengal. Oceanography, 29 (2), 2837, https://doi.org/10.5670/oceanog.2016.36.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Search Google Scholar
    • Export Citation
  • Winters, K., 2008: Growth of inertia–gravity waves in sheared inertial currents. J. Fluid Mech., 601, 85100, https://doi.org/10.1017/S0022112008000621.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 963 963 372
Full Text Views 282 282 48
PDF Downloads 363 363 65