The Information Contained in Altimetric Sea Surface Height Frequency Spectra

Charly de Marez Háskóli Íslands, University of Iceland, Reykjavík, Ísland

Search for other papers by Charly de Marez in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1712-729X
and
Jörn Callies California Institute of Technology, Pasadena, California

Search for other papers by Jörn Callies in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Despite the amount of data sampled by current and upcoming satellite missions, the temporal evolution of oceanic turbulence is for now poorly understood. Here, we use state-of-the-art satellite measurements of sea surface height time series, combined with global oceanic reanalysis and idealized numerical simulations to study the properties of the frequency spectrum for oceanic turbulence. We show that the meridional gradient of potential vorticity, that supports planetary Rossby waves, and the barotropic current are the main parameters that shape the frequency spectrum of sea surface height as observed by satellite altimetry.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charly de Marez, charly@hi.is

Abstract

Despite the amount of data sampled by current and upcoming satellite missions, the temporal evolution of oceanic turbulence is for now poorly understood. Here, we use state-of-the-art satellite measurements of sea surface height time series, combined with global oceanic reanalysis and idealized numerical simulations to study the properties of the frequency spectrum for oceanic turbulence. We show that the meridional gradient of potential vorticity, that supports planetary Rossby waves, and the barotropic current are the main parameters that shape the frequency spectrum of sea surface height as observed by satellite altimetry.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Charly de Marez, charly@hi.is
Save
  • Arbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman, and J. F. Shriver, 2012: Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain. J. Phys. Oceanogr., 42, 15771600, https://doi.org/10.1175/JPO-D-11-0151.1.

    • Search Google Scholar
    • Export Citation
  • AVISO/DUACS, 2023: SWOT Level-3 SSH, SWOT_L3_SSH[‘basic’] (version 0.3). Accessed 9 January 2024, https://doi.org/10.24400/527896/A01-2023.017.

  • Beal, L. M., W. P. M. De Ruijter, A. Biastoch, R. Zahn, and SCOR/WCRP/IAPSO Working Group 136, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, https://doi.org/10.1038/nature09983.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Barkan, and A. N. Garabato, 2020: Time scales of submesoscale flow inferred from a mooring array. J. Phys. Oceanogr., 50, 10651086, https://doi.org/10.1175/JPO-D-19-0254.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Marez, C., J. Callies, B. Haines, D. Rodriguez-Chavez, and J. Wang, 2023: Observational constraints on the submesoscale sea surface height variance of balanced motion. J. Phys. Oceanogr., 53, 12211235, https://doi.org/10.1175/JPO-D-22-0188.1.

    • Search Google Scholar
    • Export Citation
  • ECCO Consortium, I. Fukumori, O. Wang, I. Fenty, G. Forget, P. Heimbach, and R. M. Ponte, 2021: Synopsis of the ECCO Central Production global ocean and sea-ice state estimate, Version 4 Release 4. Zenodo, accessed 6 October 2022, https://doi.org/10.5281/ZENODO.3765928.

  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92108, https://doi.org/10.3402/tellusa.v62i2.15680.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1978: Models of vertical structure and the calibration of two-layer models. Dyn. Atmos. Oceans, 2, 341381, https://doi.org/10.1016/0377-0265(78)90002-7.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Vol. 30. Academic Press, 662 pp.

  • Lawrence, A., and J. Callies, 2022: Seasonality and spatial dependence of mesoscale and submesoscale ocean currents from along-track satellite altimetry. J. Phys. Oceanogr., 52, 20692089, https://doi.org/10.1175/JPO-D-22-0007.1.

    • Search Google Scholar
    • Export Citation
  • Laxenaire, R., S. Speich, and A. Stegner, 2019: Evolution of the thermohaline structure of one Agulhas Ring reconstructed from satellite altimetry and Argo floats. J. Geophys. Res. Oceans, 124, 89699003, https://doi.org/10.1029/2018JC014426.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P.-Y., G. Dibarboure, G. Jacobs, M. Martin, E. Rémy, and A. Schiller, 2017: Use of satellite altimetry for operational oceanography. Satellite Altimetry over Oceans and Land Surfaces, D. Stammer and A. Cazenave, Eds., CRC Press, 581–608.

  • Olson, D. B., and R. H. Evans, 1986: Rings of the Agulhas current. Deep-Sea Res., 33A, 2742, https://doi.org/10.1016/0198-0149(86)90106-8.

    • Search Google Scholar
    • Export Citation
  • Palter, J. B., 2015: The role of the Gulf Stream in European climate. Annu. Rev. Mar. Sci., 7, 113137, https://doi.org/10.1146/annurev-marine-010814-015656.

    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., 1983: Gulf Stream rings. Eddies in Marine Science, A. R. Robinson, Ed., Springer, 19–45, https://doi.org/10.1007/978-3-642-69003-7_2.

  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476490, https://doi.org/10.1098/rspa.1938.0032.

  • Tedesco, P., J. Gula, P. Penven, and C. Ménesguen, 2022: Mesoscale eddy kinetic energy budgets and transfers between vertical modes in the Agulhas Current. J. Phys. Oceanogr., 52, 677704, https://doi.org/10.1175/JPO-D-21-0110.1.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 320 pp.

  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 946 pp.

  • Villas Bôas, A. B., L. Lenain, B. D. Cornuelle, S. T. Gille, and M. R. Mazloff, 2022: A broadband view of the sea surface height wavenumber spectrum. Geophys. Res. Lett., 49, e2021GL096699, https://doi.org/10.1029/2021GL096699.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., and S. R. Jayne, 2011: Eddy-mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, https://doi.org/10.1175/2010JPO4477.1.

    • Search Google Scholar
    • Export Citation
  • Wortham, C., and C. Wunsch, 2014: A multidimensional spectral description of ocean variability. J. Phys. Oceanogr., 44, 944966, https://doi.org/10.1175/JPO-D-13-0113.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, and D. P. Marshall, 2010: Significant sink of ocean-eddy energy near western boundaries. Nat. Geosci., 3, 608612, https://doi.org/10.1038/ngeo943.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Wang, and B. Qiu, 2014: Oceanic mass transport by mesoscale eddies. Science, 345, 322324, https://doi.org/10.1126/science.1252418.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 522 522 452
Full Text Views 100 100 83
PDF Downloads 123 123 100