Diapycnal Upwelling Driven by Tidally Induced Mixing over Steep Topography

Xiaozhou Ruan Department of Earth and Environment, Boston University, Boston, Massachusetts

Search for other papers by Xiaozhou Ruan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1240-1584
,
Yidongfang Si Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Yidongfang Si in
Current site
Google Scholar
PubMed
Close
, and
Raffaele Ferrari Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Diapycnal upwelling along sloping topography has been shown to be an important component of the abyssal overturning circulation. Theoretical studies of mixing-driven upwelling have mostly relied on a time-averaged description of mixing acting on a mean stratification which ignores the intermittency of mixing. Typically, these studies prescribed a time-invariant turbulent diffusivity profile motivated by scenarios where tidal currents encounter gentle topography with small-scale corrugations, leading to subsequent propagation and breaking of internal waves. Here, a different scenario is considered where a tidal current interacts with smooth but steep topography, a case often encountered near continental margins and troughs. The performed nonhydrostatic simulations resolve both the strong oscillatory shear that develops along the steep critical topography and the associated mixing events. Strong diapycnal mixing is observed during the upslope phase of the tidal flow when both the near-boundary stratification and shear are enhanced. During the downslope phase, strong overturning events do develop, but they are associated with weak stratification and less efficient diapycnal mixing. These results highlight that the temporal evolution of both shear and stratification play a key role in setting when diapycnal mixing and water mass transformation occur along steep topography. In contrast, over gentle topography, tidal shears do not become sufficiently large to generate strong local mixing for typical oceanographic parameters.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaozhou Ruan, xruan@bu.edu

Abstract

Diapycnal upwelling along sloping topography has been shown to be an important component of the abyssal overturning circulation. Theoretical studies of mixing-driven upwelling have mostly relied on a time-averaged description of mixing acting on a mean stratification which ignores the intermittency of mixing. Typically, these studies prescribed a time-invariant turbulent diffusivity profile motivated by scenarios where tidal currents encounter gentle topography with small-scale corrugations, leading to subsequent propagation and breaking of internal waves. Here, a different scenario is considered where a tidal current interacts with smooth but steep topography, a case often encountered near continental margins and troughs. The performed nonhydrostatic simulations resolve both the strong oscillatory shear that develops along the steep critical topography and the associated mixing events. Strong diapycnal mixing is observed during the upslope phase of the tidal flow when both the near-boundary stratification and shear are enhanced. During the downslope phase, strong overturning events do develop, but they are associated with weak stratification and less efficient diapycnal mixing. These results highlight that the temporal evolution of both shear and stratification play a key role in setting when diapycnal mixing and water mass transformation occur along steep topography. In contrast, over gentle topography, tidal shears do not become sufficiently large to generate strong local mixing for typical oceanographic parameters.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaozhou Ruan, xruan@bu.edu
Save
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, https://doi.org/10.1175/JPO-D-11-073.1.

    • Search Google Scholar
    • Export Citation
  • Aucan, J., M. A. Merrifield, D. S. Luther, and P. Flament, 2006: Tidal mixing events on the deep flanks of Kaena ridge, Hawaii. J. Phys. Oceanogr., 36, 12021219, https://doi.org/10.1175/JPO2888.1.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., S. Legg, and J. Klymak, 2012: Double-ridge internal tide interference and its effect on dissipation in Luzon strait. J. Phys. Oceanogr., 42, 13371356, https://doi.org/10.1175/JPO-D-11-0210.1.

    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Search Google Scholar
    • Export Citation
  • Chalamalla, V. K., and S. Sarkar, 2015: Mixing, dissipation rate, and their overturn-based estimates in a near-bottom turbulent flow driven by internal tides. J. Phys. Oceanogr., 45, 19691987, https://doi.org/10.1175/JPO-D-14-0057.1.

    • Search Google Scholar
    • Export Citation
  • Cyr, F., and H. Van Haren, 2016: Observations of small-scale secondary instabilities during the shoaling of internal bores on a deep-ocean slope. J. Phys. Oceanogr., 46, 219231, https://doi.org/10.1175/JPO-D-15-0059.1.

    • Search Google Scholar
    • Export Citation
  • Dauhajre, D. P., M. J. Molemaker, J. C. McWilliams, and D. Hypolite, 2021: Effects of stratification on shoaling internal tidal bores. J. Phys. Oceanogr., 51, 31833202, https://doi.org/10.1175/JPO-D-21-0107.1.

    • Search Google Scholar
    • Export Citation
  • Dauxois, T., and W. R. Young, 1999: Near-critical reflection of internal waves. J. Fluid Mech., 390, 271295, https://doi.org/10.1017/S0022112099005108.

    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1982: Observations of internal wave reflection off sloping bottoms. J. Geophys. Res., 87, 525538, https://doi.org/10.1029/JC087iC01p00525.

    • Search Google Scholar
    • Export Citation
  • Farmer, D., and L. Armi, 1999: Stratified flow over topography: The role of small-scale entrainment and mixing in flow establishment. Proc. Roy. Soc. London, 455A, 32213258, https://doi.org/10.1098/rspa.1999.0448.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., 2014: What goes down must come up. Nature, 513, 179180, https://doi.org/10.1038/513179a.

  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1979: Comment on ‘some evidence for boundary mixing in the deep ocean’ by Laurence Armi. J. Geophys. Res., 84, 5095, https://doi.org/10.1029/JC084iC08p05095.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, https://doi.org/10.1146/annurev.fl.25.010193.001451.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., and S. Sarkar, 2011: Boundary mixing by density overturns in an internal tidal beam. Geophys. Res. Lett., 38, L14608, https://doi.org/10.1029/2011GL048135.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. A. D’Asaro, J. J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Search Google Scholar
    • Export Citation
  • Howard, L. N., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, https://doi.org/10.1017/S0022112061000317.

  • Jalali, M., A. VanDine, V. K. Chalamalla, and S. Sarkar, 2017: Oscillatory stratified flow over supercritical topography: Wave energetics and turbulence. Comput. Fluids, 158, 3948, https://doi.org/10.1016/j.compfluid.2016.12.019.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and S. M. Legg, 2010: A simple mixing scheme for models that resolve breaking internal waves. Ocean Modell., 33, 224234, https://doi.org/10.1016/j.ocemod.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian ridge. J. Phys. Oceanogr., 36, 11481164, https://doi.org/10.1175/JPO2885.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 20592074, https://doi.org/10.1175/2010JPO4396.1.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and A. Adcroft, 2003: Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33, 22242246, https://doi.org/10.1175/1520-0485(2003)033<2224:IWBACA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and K. M. H. Huijts, 2006: Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res. II, 53, 140156, https://doi.org/10.1016/j.dsr2.2005.09.014.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964, https://doi.org/10.1175/2008JPO3777.1.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2013: Internal bores and breaking internal tides on the Oregon continental slope. J. Phys. Oceanogr., 43, 120139, https://doi.org/10.1175/JPO-D-12-030.1.

    • Search Google Scholar
    • Export Citation
  • Mashayek, A., H. Salehipour, D. Bouffard, C. P. Caulfield, R. Ferrari, M. Nikurashin, W. R. Peltier, and W. D. Smyth, 2017: Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys. Res. Lett., 44, 62966306, https://doi.org/10.1002/2016GL072452.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and R. Ferrari, 2017: Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr., 47, 261283, https://doi.org/10.1175/JPO-D-16-0082.1.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, https://doi.org/10.1017/S0022112061000305.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. R. Caldwell, J. D. Nash, and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130, https://doi.org/10.1175/1520-0485(2002)032<2113:OOBMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Nash, J. D., M. H. Alford, E. Kunze, K. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, https://doi.org/10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395, https://doi.org/10.1175/2010JPO4522.1.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2003: Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Springer Science and Business Media, 260 pp.

  • Peltier, W. R., and C. P. Caulfield, 2003: Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech., 35, 135167, https://doi.org/10.1146/annurev.fluid.35.101101.161144.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, https://doi.org/10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Ruan, X., and R. Ferrari, 2021: Diagnosing diapycnal mixing from passive tracers. J. Phys. Oceanogr., 51, 757767, https://doi.org/10.1175/JPO-D-20-0194.1.

    • Search Google Scholar
    • Export Citation
  • Schmidgall, C. R., Y. Si, A. L. Stewart, A. F. Thompson, and A. M. Hogg, 2023: Dynamical controls on bottom water transport and transformation across the Antarctic Circumpolar Current. J. Phys. Oceanogr., 53, 19171940, https://doi.org/10.1175/JPO-D-22-0113.1.

    • Search Google Scholar
    • Export Citation
  • Slinn, D. N., and J. J. Riley, 1996: Turbulent mixing in the oceanic boundary layer caused by internal wave reflection from sloping terrain. Dyn. Atmos. Oceans, 24, 5162, https://doi.org/10.1016/0377-0265(95)00425-4.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 19691992, https://doi.org/10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 34763495, https://doi.org/10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1957: A survey of ocean current theory. Deep-Sea Res., 4, 149184, https://doi.org/10.1016/0146-6313(56)90048-X.

  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26 (1), 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2006: Nonlinear motions at the internal tide source. Geophys. Res. Lett., 33, L11605, https://doi.org/10.1029/2006GL025851.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2023a: Detailing secondary frontal bore of internal tides breaking above deep-ocean topography. J. Oceanogr., 79, 581592, https://doi.org/10.1007/s10872-023-00699-0.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2023b: Internal tidal sloshing and a non-linear wave source away from topography. Deep-Sea Res. I, 196, 104021, https://doi.org/10.1016/j.dsr.2023.104021.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., F. Mienis, and G. Duineveld, 2022: Contrasting internal tide turbulence in a tributary of the Whittard Canyon. Cont. Shelf Res., 236, 104679, https://doi.org/10.1016/j.csr.2022.104679.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., G. Voet, M. H. Alford, B. Fernández-Castro, A. C. Naveira Garabato, B. L. Wynne-Cattanach, H. Mercier, and M.-J. Messias, 2024: Near-slope turbulence in a Rockall canyon. Deep-Sea Res. I, 206, 104277, https://doi.org/10.1016/j.dsr.2024.104277.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., 2015: Tidally driven mixing and dissipation in the stratified boundary layer above steep submarine topography. Geophys. Res. Lett., 42, 71237130, https://doi.org/10.1002/2015GL064676.

    • Search Google Scholar
    • Export Citation
  • Wynne-Cattanach, B. L., and Coauthors, 2024: Observations of diapycnal upwelling within a sloping submarine canyon. Nature, 630, 884890, https://doi.org/10.1038/s41586-024-07411-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 147 147 26
Full Text Views 1017 1017 1008
PDF Downloads 462 462 453