Thermohaline Interleaving in the Antarctic Circumpolar Current

Maya I. Jakes Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
ARC Centre of Excellence for Climate Extremes, Hobart, Tasmania, Australia
Australian Antarctic Program Partnership, Hobart, Tasmania, Australia

Search for other papers by Maya I. Jakes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0658-6615
,
Helen E. Phillips Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Australian Antarctic Program Partnership, Hobart, Tasmania, Australia
Australian Centre for Excellence in Antarctic Science, Hobart, Tasmania, Australia

Search for other papers by Helen E. Phillips in
Current site
Google Scholar
PubMed
Close
,
Ajitha Cyriac CSIRO Environment, Perth, Western Australia, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
ARC Centre of Excellence for Climate Extremes, Hobart, Tasmania, Australia

Search for other papers by Ajitha Cyriac in
Current site
Google Scholar
PubMed
Close
,
Annie Foppert Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Australian Antarctic Program Partnership, Hobart, Tasmania, Australia

Search for other papers by Annie Foppert in
Current site
Google Scholar
PubMed
Close
,
Nathaniel L. Bindoff Australian Antarctic Program Partnership, Hobart, Tasmania, Australia
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
Australian Centre for Excellence in Antarctic Science, Hobart, Tasmania, Australia

Search for other papers by Nathaniel L. Bindoff in
Current site
Google Scholar
PubMed
Close
,
Stephen R. Rintoul CSIRO Environment, Hobart, Tasmania, Australia
Australian Antarctic Program Partnership, Hobart, Tasmania, Australia

Search for other papers by Stephen R. Rintoul in
Current site
Google Scholar
PubMed
Close
, and
Kurt L. Polzin Woods Hole Oceanographic Institution, Falmouth, Massachusetts

Search for other papers by Kurt L. Polzin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Interleaving layers are commonly observed in the subsurface ocean near thermohaline fronts. They imply a lateral exchange of water mass properties and have been shown to influence both lateral and vertical mixing rates. We examine a set of in situ observations, from electromagnetic autonomous profiling explorer (EM-APEX) floats and Triaxus transects, in an energetic meandering region of the Antarctic Circumpolar Current. The observations reveal strong interleaving features that are ubiquitous on the northern side of the Polar Front. Interleaving layers are of O(10) m thick and persist for up to 100-km downstream, over time scales of <1–6 days. The features have cross-stream slopes that are much shallower than expected from mesoscale stirring. The strength of the interleaving layers is partly governed by internal wave–driven diapycnal mixing rates that vary spatially and temporally. Generation of the interleaving layers is complex and could be impacted by several processes, including eddy stirring, shear, ageostrophic dynamics, and double diffusion. The ubiquitous nature and magnitude of these features on the warm side of the front attests to their likely role in cross-frontal exchange, mixing, and water mass transformation. Depth-averaged lateral heat flux estimates associated with the intrusions are of O(1) kW m−2, while individual values reach O(10) kW m−2, comparable to eddy heat flux estimates from previous studies. A circumpolar observational dataset reveals hotspots of thermohaline interleaving in the Southern Ocean, associated with major topographic features, confluence regions, and areas of elevated eddy activity. Understanding the processes that generate thermohaline variability, influence mixing rates, and drive cross-frontal exchange are key to understanding how the Southern Ocean regulates the global climate.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maya Jakes, maya.jakes@utas.edu.au

Abstract

Interleaving layers are commonly observed in the subsurface ocean near thermohaline fronts. They imply a lateral exchange of water mass properties and have been shown to influence both lateral and vertical mixing rates. We examine a set of in situ observations, from electromagnetic autonomous profiling explorer (EM-APEX) floats and Triaxus transects, in an energetic meandering region of the Antarctic Circumpolar Current. The observations reveal strong interleaving features that are ubiquitous on the northern side of the Polar Front. Interleaving layers are of O(10) m thick and persist for up to 100-km downstream, over time scales of <1–6 days. The features have cross-stream slopes that are much shallower than expected from mesoscale stirring. The strength of the interleaving layers is partly governed by internal wave–driven diapycnal mixing rates that vary spatially and temporally. Generation of the interleaving layers is complex and could be impacted by several processes, including eddy stirring, shear, ageostrophic dynamics, and double diffusion. The ubiquitous nature and magnitude of these features on the warm side of the front attests to their likely role in cross-frontal exchange, mixing, and water mass transformation. Depth-averaged lateral heat flux estimates associated with the intrusions are of O(1) kW m−2, while individual values reach O(10) kW m−2, comparable to eddy heat flux estimates from previous studies. A circumpolar observational dataset reveals hotspots of thermohaline interleaving in the Southern Ocean, associated with major topographic features, confluence regions, and areas of elevated eddy activity. Understanding the processes that generate thermohaline variability, influence mixing rates, and drive cross-frontal exchange are key to understanding how the Southern Ocean regulates the global climate.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maya Jakes, maya.jakes@utas.edu.au
Save
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Search Google Scholar
    • Export Citation
  • Balwada, D., A. R. Gray, L. A. Dove, and A. F. Thompson, 2024: Tracer stirring and variability in the Antarctic Circumpolar Current near the Southwest Indian Ridge. J. Geophys. Res. Oceans, 129, e2023JC019811, https://doi.org/10.1029/2023JC019811.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., 2007: Is interleaving in the Agulhas Current driven by near-inertial velocity perturbations? J. Phys. Oceanogr., 37, 932945, https://doi.org/10.1175/JPO3040.1.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., and A. L. Gordon, 1996: Southern Ocean fronts from the Greenwich Meridian to Tasmania. J. Geophys. Res., 101, 36753696, https://doi.org/10.1029/95JC02750.

    • Search Google Scholar
    • Export Citation
  • Bianchi, A. A., A. R. Piola, and G. J. Collino, 2002: Evidence of double diffusion in the Brazil–Malvinas Confluence. Deep-Sea Res. I, 49, 4152, https://doi.org/10.1016/S0967-0637(01)00039-5.

    • Search Google Scholar
    • Export Citation
  • Carter, L., I. N. McCave, and M. J. M. Williams, 2009: Circulation and water masses of the Southern Ocean: A review. Dev. Earth Environ. Sci., 8, 85114, https://doi.org/10.1016/S1571-9197(08)00004-9.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cole, S. T., and D. L. Rudnick, 2012: The spatial distribution and annual cycle of upper ocean thermohaline structure. J. Geophys. Res., 117, C02027, https://doi.org/10.1029/2011JC007033.

    • Search Google Scholar
    • Export Citation
  • Cooper, J. W., and H. Stommel, 1968: Regularly spaced steps in the main thermocline near Bermuda. J. Geophys. Res., 73, 58495854, https://doi.org/10.1029/JB073i018p05849.

    • Search Google Scholar
    • Export Citation
  • Cyriac, A., H. E. Phillips, N. L. Bindoff, H. Mao, and M. Feng, 2021: Observational estimates of turbulent mixing in the southeast Indian Ocean. J. Phys. Oceanogr., 51, 21032128, https://doi.org/10.1175/JPO-D-20-0036.1.

    • Search Google Scholar
    • Export Citation
  • Cyriac, A., H. E. Phillips, N. L. Bindoff, and K. Polzin, 2022: Turbulent mixing variability in an energetic standing meander of the Southern Ocean. J. Phys. Oceanogr., 52, 15931611, https://doi.org/10.1175/JPO-D-21-0180.1.

    • Search Google Scholar
    • Export Citation
  • Cyriac, A., A. Meyer, H. E. Phillips, and N. L. Bindoff, 2023: Observations of internal wave interactions in a Southern Ocean standing meander. J. Phys. Oceanogr., 53, 19972011, https://doi.org/10.1175/JPO-D-22-0157.1.

    • Search Google Scholar
    • Export Citation
  • Dove, L. A., D. Balwada, A. F. Thompson, and A. R. Gray, 2022: Enhanced ventilation in energetic regions of the Antarctic Circumpolar Current. Geophys. Res. Lett., 49, e2021GL097574, https://doi.org/10.1029/2021GL097574.

    • Search Google Scholar
    • Export Citation
  • Fernández-Castro, B., and Coauthors, 2024: Isopycnal eddy stirring dominates thermohaline mixing in the upper subpolar North Atlantic. J. Geophys. Res. Oceans, 129, e2023JC020817, https://doi.org/10.1029/2023JC020817.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and K. L. Polzin, 2005: Finescale structure of the T–S relation in the eastern North Atlantic. J. Phys. Oceanogr., 35, 14371454, https://doi.org/10.1175/JPO2763.1.

    • Search Google Scholar
    • Export Citation
  • Fine, E. C., and Coauthors, 2022: Double diffusion, shear instabilities, and heat impacts of a Pacific summer water intrusion in the Beaufort Sea. J. Phys. Oceanogr., 52, 189203, https://doi.org/10.1175/JPO-D-21-0074.1.

    • Search Google Scholar
    • Export Citation
  • Flament, P., 2002: A state variable for characterizing water masses and their diffusive stability: Spiciness. Prog. Oceanogr., 54, 493501, https://doi.org/10.1016/S0079-6611(02)00065-4.

    • Search Google Scholar
    • Export Citation
  • Foppert, A., 2019: Observed storm track dynamics in Drake Passage. J. Phys. Oceanogr., 49, 867884, https://doi.org/10.1175/JPO-D-18-0150.1.

    • Search Google Scholar
    • Export Citation
  • Foppert, A., K. A. Donohue, D. R. Watts, and K. L. Tracey, 2017: Eddy heat flux across the Antarctic Circumpolar Current estimated from sea surface height standard deviation. J. Geophys. Res. Oceans, 122, 69476964, https://doi.org/10.1002/2017JC012837.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and G. Holloway, 1992: Sensitivity of the GFDL ocean model to different diffusivities for heat and salt. J. Phys. Oceanogr., 22, 11581177, https://doi.org/10.1175/1520-0485(1992)022<1158:SOTGOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1982: On the parameterization of diapycnal fluxes due to double-diffusive intrusions. J. Phys. Oceanogr., 12, 952959, https://doi.org/10.1175/1520-0485(1982)012<0952:OTPODF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Georgi, D. T., 1978: Fine structure in the Antarctic Polar Front zone: Its characteristics and possible relationship to internal waves. J. Geophys. Res., 83, 45794588, https://doi.org/10.1029/JC083iC09p04579.

    • Search Google Scholar
    • Export Citation
  • Giddy, I. S., I. Fer, S. Swart, and S.-A. Nicholson, 2023: Vertical convergence of turbulent and double-diffusive heat flux drives warming and erosion of Antarctic Winter Water in summer. J. Phys. Oceanogr., 53, 19411958, https://doi.org/10.1175/JPO-D-22-0259.1.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., K. L. Sheen, S. Swart, and A. F. Thompson, 2021: Mixing in the Southern Ocean. Ocean Mixing: Drivers, Mechanisms and Impacts, Elsevier, 301–327, https://doi.org/10.1016/B978-0-12-821512-8.00019-0.

  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, https://doi.org/10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., E. A. D’Asaro, J. J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Search Google Scholar
    • Export Citation
  • Griffiths, R. W., and A. A. Bidokhti, 2008: Interleaving intrusions produced by internal waves: A laboratory experiment. J. Fluid Mech., 602, 219239, https://doi.org/10.1017/S0022112008000839.

    • Search Google Scholar
    • Export Citation
  • Gruber, N., and Coauthors, 2009: Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, https://doi.org/10.1029/2008GB003349.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics, Vol. 77, Academic Press, 373–386, https://doi.org/10.1016/S0074-6142(01)80129-7.

  • Haynes, P., and J. Anglade, 1997: The vertical-scale cascade in atmospheric tracers due to large-scale differential advection. J. Atmos. Sci., 54, 11211136, https://doi.org/10.1175/1520-0469(1997)054<1121:TVSCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hebert, D., 1999: Intrusions: What drives them? J. Phys. Oceanogr., 29, 13821391, https://doi.org/10.1175/1520-0485(1999)029<1382:IWDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hebert, D., and J. N. Moum, 1994: Decay of a near-inertial wave. J. Phys. Oceanogr., 24, 23342351, https://doi.org/10.1175/1520-0485(1994)024<2334:DOANIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatte, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, https://doi.org/10.1029/JC091iC07p08487.

    • Search Google Scholar
    • Export Citation
  • Holyer, J. Y., T. J. Jones, M. G. Priestley, and N. C. Williams, 1987: The effect of vertical temperature and salinity gradients on double-diffusive interleaving. Deep-Sea Res., 34A, 517530, https://doi.org/10.1016/0198-0149(87)90003-3.

    • Search Google Scholar
    • Export Citation
  • Hua, B. L., and P. Klein, 1998: An exact criterion for the stirring properties of nearly two-dimensional turbulence. Physica D, 113, 98110, https://doi.org/10.1016/S0167-2789(97)00143-7.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 2005: Nonlinear vorticity balance of the Antarctic Circumpolar Current. J. Geophys. Res., 110, C11008, https://doi.org/10.1029/2004JC002753.

    • Search Google Scholar
    • Export Citation
  • Jackson, P. R., and C. R. Rehmann, 2014: Experiments on differential scalar mixing in turbulence in a sheared, stratified flow. J. Phys. Oceanogr., 44, 26612680, https://doi.org/10.1175/JPO-D-14-0027.1.

    • Search Google Scholar
    • Export Citation
  • Jakes, M. I., H. E. Phillips, A. Foppert, A. Cyriac, N. L. Bindoff, S. R. Rintoul, and A. F. Thompson, 2024: Observational evidence of cold filamentary intensification in an energetic meander of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 54, 717740, https://doi.org/10.1175/JPO-D-23-0085.1.

    • Search Google Scholar
    • Export Citation
  • Jan, S., S.-H. Wang, K.-C. Yang, Y. J. Yang, and M.-H. Chang, 2019: Glider observations of interleaving layers beneath the Kuroshio primary velocity core east of Taiwan and analyses of underlying dynamics. Sci. Rep., 9, 11401, https://doi.org/10.1038/s41598-019-47912-z.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., 1977: A note on the lateral mixing of water masses. J. Phys. Oceanogr., 7, 626629, https://doi.org/10.1175/1520-0485(1977)007<0626:ANOTLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., W. Zenk, and J. M. Toole, 1978: The anatomy of the Antarctic Polar Front in the Drake Passage. J. Geophys. Res., 83, 60936113, https://doi.org/10.1029/JC083iC12p06093.

    • Search Google Scholar
    • Export Citation
  • Kantha, L., S. Carniel, and M. Sclavo, 2011: A note on modeling double diffusive mixing in the global ocean. Ocean Modell., 36, 4048, https://doi.org/10.1016/j.ocemod.2010.09.003.

    • Search Google Scholar
    • Export Citation
  • Klein, P., A. M. Treguier, and B. L. Hua, 1998: Three-dimensional stirring of thermohaline fronts. J. Mar. Res., 56, 589612.

  • Klinck, J., and W. Nowlin Jr., 2001: Antarctic Circumpolar Current. Encyclopedia of Ocean Sciences, Academic Press, 151–159, https://doi.org/10.1006/rwos.2001.0370.

  • Klymak, J. M., W. Crawford, M. H. Alford, J. A. Mackinnon, and R. Pinkel, 2015: Along-isopycnal variability of spice in the North Pacific. J. Geophys. Res. Oceans, 120, 22872307, https://doi.org/10.1002/2013JC009421.

    • Search Google Scholar
    • Export Citation
  • Kuzmina, N., and V. Zhurbas, 2000: Effects of double diffusion and turbulence on interleaving at baroclinic oceanic fronts. J. Phys. Oceanogr., 30, 30253038, https://doi.org/10.1175/1520-0485(2000)030<3025:EODDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuzmina, N., J. H. Lee, and V. Zhurbas, 2004: Effects of turbulent mixing and horizontal shear on double-diffusive interleaving in the central and western equatorial Pacific. J. Phys. Oceanogr., 34, 122141, https://doi.org/10.1175/1520-0485(2004)034<0122:EOTMAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuzmina, N., B. Rudels, T. Stipa, and V. Zhurbas, 2005: The structure and driving mechanisms of the Baltic intrusions. J. Phys. Oceanogr., 35, 11201137, https://doi.org/10.1175/JPO2749.1.

    • Search Google Scholar
    • Export Citation
  • Li, Z., M. H. England, S. Groeskamp, I. Cerovečki, and Y. Luo, 2021: The origin and fate of subantarctic mode water in the Southern Ocean. J. Phys. Oceanogr., 51, 29512972, https://doi.org/10.1175/JPO-D-20-0174.1.

    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., T. B. Sanford, J. A. Carlson, and J. H. Dunlap, 2016: Autonomous microstructure EM-APEX floats. Methods Oceanogr., 17, 282295, https://doi.org/10.1016/J.MIO.2016.09.003.

    • Search Google Scholar
    • Export Citation
  • Lueck, R., and Coauthors, 2024: Best practices recommendations for estimating dissipation rates from shear probes. Front. Mar. Sci., 11, 1334327, https://doi.org/10.3389/fmars.2024.1334327.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., and P. B. Rhines, 2001: Meridional transport across a zonal channel: Topographic localization. J. Phys. Oceanogr., 31, 14271439, https://doi.org/10.1175/1520-0485(2001)031<1427:MTAAZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, B. D., and D. E. Kelley, 1997: Effect of baroclinicity on double-diffusive interleaving. J. Phys. Oceanogr., 27, 19972008, https://doi.org/10.1175/1520-0485(1997)027<1997:EOBODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1984: The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion. J. Phys. Oceanogr., 14, 15771589, https://doi.org/10.1175/1520-0485(1984)014<1577:TRRODA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1985a: Double-diffusive interleaving. Part I: Linear stability analysis. J. Phys. Oceanogr., 15, 15321541, https://doi.org/10.1175/1520-0485(1985)015<1532:DDIPIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1985b: Double-diffusive interleaving. Part II: Finite amplitude, steady state interleaving. J. Phys. Oceanogr., 15, 15421556, https://doi.org/10.1175/1520-0485(1985)015<1542:DDIPIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. Tech. Rep., SCOR/IAPSO WG127, 34 pp., https://www.teos-10.org/.

  • McDougall, T. J., and O. A. Krzysik, 2015: Spiciness. J. Mar. Res., 73, 141152.

  • McDougall, T. J., S. A. Thorpe, and C. H. Gibson, 1988: Small-Scale Turbulence and Mixing in the Ocean: A Glossary. Elsevier Oceanography Series, Vol. 46, Elsevier, 3–9, https://doi.org/10.1016/S0422-9894(08)70533-6.

  • McIntyre, M. E., 1970: Diffusive destabilisation of the baroclinic circular vortex. Geophys. Astrophys. Fluid Dyn., 1, 1957, https://doi.org/10.1080/03091927009365767.

    • Search Google Scholar
    • Export Citation
  • Meijers, A. J. S., N. L. Bindoff, and S. R. Rintoul, 2011: Estimating the four-dimensional structure of the Southern Ocean using satellite altimetry. J. Atmos. Oceanic Technol., 28, 548568, https://doi.org/10.1175/2010JTECHO790.1.

    • Search Google Scholar
    • Export Citation
  • Merryfield, B., 2005: Ocean mixing in 10 steps. Science, 308, 641642, https://doi.org/10.1126/science.1111417.

  • Merryfield, W. J., G. Holloway, and A. E. Gargett, 1999: A global ocean model with double-diffusive mixing. J. Phys. Oceanogr., 29, 11241142, https://doi.org/10.1175/1520-0485(1999)029<1124:AGOMWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meunier, T., C. Ménesguen, R. Schopp, and S. Le Gentil, 2015: Tracer stirring around a meddy: The formation of layering. J. Phys. Oceanogr., 45, 407423, https://doi.org/10.1175/JPO-D-14-0061.1.

    • Search Google Scholar
    • Export Citation
  • Meyer, A., K. L. Polzin, B. M. Sloyan, and H. E. Phillips, 2015: Internal waves and mixing near the Kerguelen Plateau. J. Phys. Oceanogr., 46, 417437, https://doi.org/10.1175/JPO-D-15-0055.1.

    • Search Google Scholar
    • Export Citation
  • Middleton, L., E. C. Fine, J. A. MacKinnon, M. H. Alford, and J. R. Taylor, 2021: Estimating dissipation rates associated with double diffusion. Geophys. Res. Lett., 48, e2021GL092779, https://doi.org/10.1029/2021GL092779.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, https://doi.org/10.1017/S0022112061000305.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., D. W. Waugh, A. M. C. Hogg, D. C. Jones, and R. P. Abernathey, 2022: Ventilation of the Southern Ocean pycnocline. Annu. Rev. Mar. Sci., 14, 405430, https://doi.org/10.1146/annurev-marine-010419-011012.

    • Search Google Scholar
    • Export Citation
  • Nagai, T., R. Inoue, A. Tandon, and H. Yamazaki, 2015: Evidence of enhanced double-diffusive convection below the main stream of the Kuroshio Extension. J. Geophys. Res. Oceans, 120, 84028421, https://doi.org/10.1002/2015JC011288.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., J. T. Allen, H. Leach, V. H. Strass, and R. T. Pollard, 2001: Mesoscale subduction at the Antarctic Polar Front driven by baroclinic instability. J. Phys. Oceanogr., 31, 20872107, https://doi.org/10.1175/1520-0485(2001)031<2087:MSATAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, https://doi.org/10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Orsi, H. A., T. Whitworth, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, https://doi.org/10.1016/0967-0637(95)00021-W.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-H., E. Charriaud, and M. Fieux, 1998: Thermohaline structure of the Antarctic Surface Water/Winter Water in the Indian sector of the Southern Ocean. J. Mar. Syst., 17, 523, https://doi.org/10.1016/S0924-7963(98)00026-8.

    • Search Google Scholar
    • Export Citation
  • Perkin, R. G., and E. L. Lewis, 1984: Mixing in the West Spitsbergen Current. J. Phys. Oceanogr., 14, 13151325, https://doi.org/10.1175/1520-0485(1984)014<1315:MITWSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, https://doi.org/10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and N. L. Bindoff, 2014: On the nonequivalent barotropic structure of the Antarctic Circumpolar Current: An observational perspective. J. Geophys. Res. Oceans, 119, 52215243, https://doi.org/10.1002/2013JC009516.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2024: Vertical Microstructure Profiler (VMP-2000) data from Investigator cruise IN2018 V05. Zenodo, accessed 8 November 2024, https://doi.org/10.5281/zenodo.14058393.

  • Polzin, K. L., and E. T. Montgomery, 1998: Microstructure profiling with the high resolution profiler. Woods Hole Oceanographic Institution, 16 pp., https://www.whoi.edu/cms/files/smcdonald/2006/7/MicrostructureProfilingwithHRP_12614.pdf.

  • Polzin, K. L., A. C. Naveira Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, https://doi.org/10.1002/2013JC008979.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2013: Double-Diffusive Convection. Vol. 9780521880. Cambridge University Press, 350 pp., https://doi.org/10.1017/CBO9781139034173.

  • Richards, K., and H. Banks, 2002: Characteristics of interleaving in the western equatorial Pacific. J. Geophys. Res., 107, 3231, https://doi.org/10.1029/2001JC000971.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., J. R. Dunn, and J. L. Wilkin, 2002: Ocean interpolation by four-dimensional weighted least squares–application to the waters around Australasia. J. Atmos. Oceanic Technol., 19, 13571375, https://doi.org/10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 2018: The global influence of localized dynamics in the Southern Ocean. Nature, 558, 209218, https://doi.org/10.1038/s41586-018-0182-3.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., C. W. Hughes, and D. Olbers, 2001: The Antarctic circumpolar current system. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics, Vol. 77, Academic Press, 271–302, https://doi.org/10.1016/S0074-6142(01)80124-8.

  • Roden, G. I., 1964: Shallow temperature inversions in the Pacific Ocean. J. Geophys. Res., 69, 28992914, https://doi.org/10.1029/JZ069i014p02899.

    • Search Google Scholar
    • Export Citation
  • Rollo, C., K. J. Heywood, and R. A. Hall, 2022: Glider observations of thermohaline staircases in the tropical North Atlantic using an automated classifier. Geosci. Instrum. Methods Data Syst., 11, 359373, https://doi.org/10.5194/gi-11-359-2022.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., 1983: A practical indicator of the stability of the water column to double-diffusive activity. Deep-Sea Res., 30A, 11051107, https://doi.org/10.1016/0198-0149(83)90063-8.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., 1992: Intrusive mixing in a Mediterranean salt lens—Intrusion slopes and dynamical mechanisms. J. Phys. Oceanogr., 22, 12741285, https://doi.org/10.1175/1520-0485(1992)022<1274:IMIAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., and O. Kerr, 2003: Oceanic thermohaline intrusions: Theory. Prog. Oceanogr., 56, 483497, https://doi.org/10.1016/S0079-6611(03)00029-6.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., and K. Richards, 2003: Oceanic thermohaline intrusions: Observations. Prog. Oceanogr., 56, 499527, https://doi.org/10.1016/S0079-6611(03)00028-4.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., and J. S. Turner, 1979: The vertical length scale of double-diffusive intrusions. Deep-Sea Res., 26A, 903913, https://doi.org/10.1016/0198-0149(79)90104-3.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., G. Björk, R. D. Muench, and U. Schauer, 1999: Double-diffusive layering in the Eurasian Basin of the Arctic Ocean. J. Mar. Syst., 21, 327, https://doi.org/10.1016/S0924-7963(99)00003-2.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, and R. Morrow, 2008: Response of the Antarctic circumpolar current to atmospheric variability. J. Climate, 21, 30203039, https://doi.org/10.1175/2007JCLI1702.1.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Rios, A., R. K. Shearman, C. M. Lee, H. L. Simmons, L. St Laurent, A. J. Lucas, T. Ijichi, and S. Jan, 2024: Characterization of mixing at the edge of a Kuroshio intrusion into the South China Sea: Analysis of thermal variance diffusivity measurements. J. Phys. Oceanogr., 54, 11211142, https://doi.org/10.1175/JPO-D-23-0007.1.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., 1971: Motionally induced electric and magnetic fields in the sea. J. Geophys. Res., 76, 34763492, https://doi.org/10.1029/JC076i015p03476.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1981: Form of the temperature-salinity relationship in the central water: Evidence for double-diffusive mixing. J. Phys. Oceanogr., 11, 10151026, https://doi.org/10.1175/1520-0485(1981)011<1015:FOTTSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1994: Double diffusion in oceanography. Annu. Rev. Fluid Mech., 26, 255285, https://doi.org/10.1146/annurev.fl.26.010194.001351.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., and D. T. Georgi, 1982: Finestructure and microstructure in the North Atlantic Current. J. Mar. Res., 40, 659705.

  • Schmitt, R. W., R. G. Lueck, and T. M. Joyce, 1986: Fine- and microstructure at the edge of a warm-core ring. Deep-Sea Res., 33A, 16651689, https://doi.org/10.1016/0198-0149(86)90073-7.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., J. R. Ledwell, E. T. Montgomery, K. L. Polzin, and J. M. Toole, 2005: Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science, 308, 685688, https://doi.org/10.1126/science.1108678.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., M. C. Gregg, M. H. Alford, and R. R. Harcourt, 2009: Characterizing thermohaline intrusions in the North Pacific subtropical frontal zone. J. Phys. Oceanogr., 39, 27352756, https://doi.org/10.1175/2009JPO4190.1.

    • Search Google Scholar
    • Export Citation
  • Siegelman, L., 2020: Energetic submesoscale dynamics in the ocean interior. J. Phys. Oceanogr., 50, 727749, https://doi.org/10.1175/JPO-D-19-0253.1.

    • Search Google Scholar
    • Export Citation
  • Siegelman, L., P. Klein, P. Rivière, A. F. Thompson, H. S. Torres, M. Flexas, and D. Menemenlis, 2020a: Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci., 13, 5055, https://doi.org/10.1038/s41561-019-0489-1.

    • Search Google Scholar
    • Export Citation
  • Siegelman, L., P. Klein, A. F. Thompson, H. S. Torres, and D. Menemenlis, 2020b: Altimetry-based diagnosis of deep-reaching sub-mesoscale ocean fronts. Fluids, 5, 145, https://doi.org/10.3390/fluids5030145.

    • Search Google Scholar
    • Export Citation
  • Smith, S. K., and R. Ferrari, 2009: The production and dissipation of compensated thermohaline variance by mesoscale stirring. J. Phys. Oceanogr., 39, 24772501, https://doi.org/10.1175/2009JPO4103.1.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and B. Ruddick, 2010: Effects of ambient turbulence on interleaving at a baroclinic front. J. Phys. Oceanogr., 40, 685712, https://doi.org/10.1175/2009JPO4297.1.

    • Search Google Scholar
    • Export Citation
  • Song, H., L. M. Pinheiro, B. Ruddick, and F. C. Teixeira, 2011: Meddy, spiral arms, and mixing mechanisms viewed by seismic imaging in the Tagus Abyssal Plain (SW Iberia). J. Mar. Res., 69, 827842.

    • Search Google Scholar
    • Export Citation
  • Spira, T., S. Swart, and M. du Plessis, 2023: 18 years of hydrographic profiles in the Southern Ocean. Zenodo, accessed 1 March 2024, https://doi.org/10.5281/zenodo.10258138.

  • Spira, T., S. Swart, I. Giddy, and M. du Plessis, 2024: The observed spatiotemporal variability of Antarctic Winter Water. J. Geophys. Res. Oceans, 129, e2024JC021017, https://doi.org/10.1029/2024JC021017.

    • Search Google Scholar
    • Export Citation
  • Spiro Jaeger, G., A. J. Lucas, and A. Mahadevan, 2020: Formation of interleaving layers in the Bay of Bengal. Deep-Sea Res. II, 172, 104717, https://doi.org/10.1016/j.dsr2.2019.104717.

    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1967: Lateral mixing of water masses. Deep-Sea Res. Oceanogr. Abstr., 14, 747753, https://doi.org/10.1016/S0011-7471(67)80011-1.

    • Search Google Scholar
    • Export Citation
  • Stern, M. E., and J. Stewart Turner, 1969: Salt fingers and convecting layers. Deep-Sea Res. Oceanogr. Abstr., 16, 497511, https://doi.org/10.1016/0011-7471(69)90038-2.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and K. N. Fedorov, 1967: Small scale structure in temperature and salinity near Timor and Mindanao. Tellus, 19, 306325, https://doi.org/10.3402/tellusa.v19i2.9792.

    • Search Google Scholar
    • Export Citation
  • Tait, R. I., and M. R. Howe, 1968: Some observations of thermo-haline stratification in the deep ocean. Deep-Sea Res. Oceanogr. Abstr., 15, 275280, https://doi.org/10.1016/0011-7471(68)90005-3.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift, 2011: Dynamical processes for descriptive ocean circulation. Descriptive Physical Oceanography an Introduction, 6th ed. Academic Press, 187–221, https://doi.org/10.1016/B978-0-7506-4552-2.10007-1.

  • Tamsitt, V., and Coauthors, 2017: Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun., 8, 172, https://doi.org/10.1038/s41467-017-00197-0.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 1738, https://doi.org/10.1029/177GM04.

  • Thompson, A. F., 2008: The atmospheric ocean: Eddies and jets in the Antarctic Circumpolar Current. Philos. Trans. Roy. Soc., A366, 45294541, https://doi.org/10.1098/rsta.2008.0196.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, https://doi.org/10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, https://doi.org/10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., S. T. Gille, J. A. MacKinnon, and J. Sprintall, 2007: Spatial and temporal patterns of small-scale mixing in Drake Passage. J. Phys. Oceanogr., 37, 572592, https://doi.org/10.1175/JPO3021.1.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., 1981a: Anomalous characteristics of equatorial thermohaline finestructure. J. Phys. Oceanogr., 11, 871876, https://doi.org/10.1175/1520-0485(1981)011%3c0871:ACOETF%3e2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., 1981b: Intrusion characteristics in the Antarctic Polar Front. J. Phys. Oceanogr., 11, 780793, https://doi.org/10.1175/1520-0485(1981)011<0780:ICITAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and D. T. Georgi, 1981: On the dynamics and effects of double-diffusively driven intrusions. Prog. Oceanogr., 10, 123145, https://doi.org/10.1016/0079-6611(81)90003-3.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1965: The coupled turbulent transports of salt and and heat across a sharp density interface. Int. J. Heat Mass Transfer, 8, 759767, https://doi.org/10.1016/0017-9310(65)90022-0.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1967: Salt fingers across a density interface. Deep-Sea Res. Oceanogr. Abstr., 14, 599611, https://doi.org/10.1016/0011-7471(67)90066-6.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1968: The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech., 33, 639656, https://doi.org/10.1017/S002211206800159X.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1978: Double-diffusive intrusions into a density gradient. J. Geophys. Res., 83, 28872901, https://doi.org/10.1029/JC083iC06p02887.

    • Search Google Scholar
    • Export Citation
  • van der Boog, C. G., H. A. Dijkstra, J. D. Pietrzak, and C. A. Katsman, 2021: Double-diffusive mixing makes a small contribution to the global ocean circulation. Commun. Earth Environ., 2, 46, https://doi.org/10.1038/s43247-021-00113-x.

    • Search Google Scholar
    • Export Citation
  • Walsh, D., and B. Ruddick, 1995: Double-diffusive interleaving: The influence of nonconstant diffusivities. J. Phys. Oceanogr., 25, 348358, https://doi.org/10.1175/1520-0485(1995)025<0348:DDITIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, D., and B. Ruddick, 2000: Double-diffusive interleaving in the presence of turbulence: The effect of a nonconstant flux ratio. J. Phys. Oceanogr., 30, 22312245, https://doi.org/10.1175/1520-0485(2000)030<2231:DDIITP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, and L. D. Talley, 2018: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci., 11, 842847, https://doi.org/10.1038/s41561-018-0213-6.

    • Search Google Scholar
    • Export Citation
  • Williams, A. J., III, 1981: The role of double diffusion in a Gulf Stream frontal intrusion. J. Geophys. Res., 86, 19171928, https://doi.org/10.1029/JC086iC03p01917.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., G. C. Johnson, and W. B. Owens, 2003: Delayed-mode calibration of autonomous CTD profiling float salinity data by θ–S climatology. J. Atmos. Oceanic Technol., 20, 308318, https://doi.org/10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., R. Keeley, T. Carval, and the Argo Data Management Team, 2024: Argo quality control manual for CTD and trajectory data. Argo Tech. Rep., 117 pp., https://doi.org/10.13155/33951.

  • Woods, J. D., R. Onken, and J. Fischer, 1986: Thermohaline intrusions created isopycnically at oceanic fronts are inclined to isopycnals. Nature, 322, 446449, https://doi.org/10.1038/322446a0.

    • Search Google Scholar
    • Export Citation
  • Yang, X., P. G. Strutton, A. Cyriac, H. E. Phillips, N. A. Pittman, and C. R. Vives, 2022: Physical drivers of biogeochemical variability in the Polar Front meander. J. Geophys. Res. Oceans, 127, e2021JC017863, https://doi.org/10.1029/2021JC017863.

    • Search Google Scholar
    • Export Citation
  • Yoshida, J., H. Nagashima, and H. Niino, 1989: The behavior of double-diffusive intrusion in a rotating system. J. Geophys. Res., 94, 49234937, https://doi.org/10.1029/JC094iC04p04923.

    • Search Google Scholar
    • Export Citation
  • Youngs, M. K., A. F. Thompson, A. Lazar, and K. J. Richards, 2017: ACC meanders, energy transfer, and mixed barotropic-baroclinic instability. J. Phys. Oceanogr., 47, 12911305, https://doi.org/10.1175/JPO-D-16-0160.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. W. Schmitt, and R. X. Huang, 1998: Sensitivity of the GFDL modular ocean model to parameterization of double-diffusive processes. J. Phys. Oceanogr., 28, 589605, https://doi.org/10.1175/1520-0485(1998)028<0589:SOTGMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and M. Nikurashin, 2020: Small-scale topographic form stress and local dynamics of the Southern Ocean. J. Geophys. Res. Oceans, 125, e2019JC015420, https://doi.org/10.1029/2019JC015420.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., M. Nikurashin, B. Peña-Molino, S. R. Rintoul, and E. Doddridge, 2023: A theory of standing meanders of the Antarctic Circumpolar Current and their response to wind. J. Phys. Oceanogr., 53, 235251, https://doi.org/10.1175/JPO-D-22-0086.1.

    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., and I. S. Oh, 2001: Can turbulence suppress double-diffusively driven interleaving completely? J. Phys. Oceanogr., 31, 22512254, https://doi.org/10.1175/1520-0485(2001)031<2251:CTSDDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., I. D. Kuzmina, and N. P. Lozovatskii, 1988: Role of baroclinicity for intrusion layering of the ocean. Okeanologiya, 28, 5053.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., and T. J. McDougall, 2008: Vertical and lateral mixing processes deduced from the Mediterranean Water signature in the North Atlantic. J. Phys. Oceanogr., 38, 164176, https://doi.org/10.1175/2007JPO3507.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 383 383 383
PDF Downloads 420 420 420