A Theory of the Mean Flow Driven by Long Internal Waves in a Rotating Basin, with Application to Lake Kinneret

View More View Less
  • 1 Joint Program in Physical Oceanography, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
  • 2 Environmental Research Laboratories, Great Lakes Environmental Research Laboratory, NOAA, Ann Arbor, MI 48104
© Get Permissions
Restricted access

Abstract

The rectified flow induced by wind-driven internal seiches in a rotating lake is studied. Friction and nonlinearity combine to generate a secondary mean flow which is calculated analytically for the case of a uniform depth lake and numerically for variable depth.

The theory is applied to Lake Kinneret, the former Sea of Galilee, where the diurnal wind forcing produces a large internal Kelvin wave and which has a strong cyclonic mean flow. The uniform depth model reproduces the diurnal response adequately, but variable depth is required to reproduce the mean flow.

Abstract

The rectified flow induced by wind-driven internal seiches in a rotating lake is studied. Friction and nonlinearity combine to generate a secondary mean flow which is calculated analytically for the case of a uniform depth lake and numerically for variable depth.

The theory is applied to Lake Kinneret, the former Sea of Galilee, where the diurnal wind forcing produces a large internal Kelvin wave and which has a strong cyclonic mean flow. The uniform depth model reproduces the diurnal response adequately, but variable depth is required to reproduce the mean flow.

Save