• Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

  • Argo, 2019: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC)—Snapshot of Argo GDAC of December 10th 2019. Argo, accessed 16 December 2019, https://doi.org/10.17882/42182#68867.

    • Crossref
    • Export Citation
  • Baker-Yeboah, S., D. A. Byrne, and D. R. Watts, 2010: Observations of mesoscale eddies in the South Atlantic Cape Basin: Baroclinic and deep barotropic eddy variability. J. Geophys. Res., 115, C12069, https://doi.org/10.1029/2010JC006236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, E. D., 1989: The poleward undercurrent on the eastern boundary of the subtropical North Atlantic. Poleward Flows Along Eastern Ocean Boundaries. S. Neshyba et al., Eds., Coastal and Estuarine Studies, Vol. 34, Springer, 82–95.

    • Crossref
    • Export Citation
  • Batteen, M. L., J. R. Martinez, D. W. Bryan, and E. J. Buch, 2000: A modeling study of the coastal eastern boundary current system off Iberia and Morocco. J. Geophys. Res., 105, 14 17314 195, https://doi.org/10.1029/2000JC900026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batteen, M. L., A. S. Martinho, H. A. Miller, and J. L. McClean, 2007: A process-oriented modelling study of the coastal Canary and Iberian Current system. Ocean Modell., 18, 136, https://doi.org/10.1016/j.ocemod.2007.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benitez-Nelson, C. R., and et al. , 2007: Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science, 316, 10171021, https://doi.org/10.1126/science.1136221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casanova-Masjoan, M., M. D. Pérez-Hernández, P. Vélez-Belchí, L. Cana, and A. Hernández-Guerra, 2020: Variability of the Canary Current diagnosed by inverse box models. J. Geophys. Res. Oceans, 125, e2020JC016199, https://doi.org/10.1029/2020JC016199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chidichimo, M. P., T. Kanzow, S. A. Cunningham, W. E. Johns, and J. Marotzke, 2010: The contribution of eastern-boundary density variations to the Atlantic meridional overturning circulation at 26.5°N. Ocean Sci., 6, 475490, https://doi.org/10.5194/os-6-475-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. A., N. Garfield, R. G. Paquette, and E. Carter, 1996: Lagrangian measurement of subsurface poleward flow between 38°N and 43°N along the West Coast of the United States during summer, 1993. Geophys. Res. Lett., 23, 24612464, https://doi.org/10.1029/96GL02138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. A., N. Garfield, T. A. Rago, F. W. Rischmiller, and E. Carter, 2000: Mean structure of the inshore countercurrent and California undercurrent off Point Sur, California. Deep-Sea Res. II, 47, 765782, https://doi.org/10.1016/S0967-0645(99)00126-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. A., J. T. Pennington, C. G. Castro, T. A. Rago, and F. P. Chavez, 2003: The California Current system off Monterey, California: Physical and biological coupling. Deep-Sea Res. II, 50, 23892404, https://doi.org/10.1016/S0967-0645(03)00134-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. A., L. M. Ivanov, O. V. Melnichenko, and N. Garfield, 2004: California undercurrent variability and eddy transport estimated from RAFOS float observations. J. Geophys. Res., 109, C05028, https://doi.org/10.1029/2003JC002191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. A., T. A. Rago, T. Margolina, and L. Ivanov, 2018: Lagrangian observations of the along-slope path of the California undercurrent. Deep-Sea Res. II, 151, 115128, https://doi.org/10.1016/j.dsr2.2018.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, T. P., B. M. Hickey, I. Shulman, and R. E. Thomson, 2014: Coastal trapped waves, alongshore pressure gradients, and the California Undercurrent. J. Phys. Oceanogr., 44, 319342, https://doi.org/10.1175/JPO-D-13-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiuza, A., 1982: The Portuguese coastal upwelling system. Actual Problems of Oceanography in Portugal, Junta Nacional de Investigação, 45–71.

  • Fonseca, T. R., 1989: An overview of the poleward undercurrent and upwelling along the Chilean Coast. Poleward Flows along Eastern Ocean Boundaries, S. J. Neshyba et al., Eds., Coastal and Estuarine Studies, Vol. 34, Amer. Geophys. Union, 203–228.

    • Crossref
    • Export Citation
  • Fraile-Nuez, E., F. Machín, P. Vélez-Belchí, F. López-Laatzen, V. Benítez-Barrios, and A. Hernández-Guerra, 2010: Nine years of mass transport data in the eastern boundary of the North Atlantic Subtropical Gyre. J. Geophys. Res., 115, C09009, https://doi.org/10.1029/2010JC006161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fratantoni, D. M., and P. Richardson, 1999: SOFAR float observations of an intermediate-depth eastern boundary current and mesoscale variability in the eastern tropical Atlantic Ocean. J. Phys. Oceanogr., 29, 12651278, https://doi.org/10.1175/1520-0485(1999)029<1265:SFOOAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfield, N., C. A. Collins, R. G. Paquette, and E. Carter, 1999: Lagrangian exploration of the California Undercurrent, 1992–95. J. Phys. Oceanogr., 29, 560583, https://doi.org/10.1175/1520-0485(1999)029<0560:LEOTCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagen, E., 2001: Northwest African upwelling scenario. Oceanol. Acta, 24, 113128, https://doi.org/10.1016/S0399-1784(00)01110-5.

  • Haynes, R., and E. D. Barton, 1990: A poleward flow along the Atlantic coast of the Iberian Peninsula. J. Geophys. Res., 95, 11 42511 441, https://doi.org/10.1029/JC095iC07p11425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Guerra, A., F. López-Laatzen, F. Machín, D. De Armas, and J. L. Pelegrí, 2001: Water masses, circulation and transport in the eastern boundary current of the North Atlantic subtropical gyre. Sci. Mar., 65, 177186, https://doi.org/10.3989/scimar.2001.65s1177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Guerra, A., and et al. , 2002: Temporal variability of mass transport in the Canary Current. Deep-Sea Res. II, 49, 34153426, https://doi.org/10.1016/S0967-0645(02)00092-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Guerra, A., E. Fraile-Nuez, R. Borges, F. López-Laatzen, P. Vélez-Belchí, G. Parrilla, and T. Muller, 2003: Transport variability in the Lanzarote passage (eastern boundary current of the North Atlantic subtropical gyre). Deep-Sea Res. I, 50, 189200, https://doi.org/10.1016/S0967-0637(02)00163-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Guerra, A., E. Fraile-Nuez, F. López-Laatzen, A. Martínez, G. Parrilla, and P. Vélez-Belchí, 2005: Canary Current and North Equatorial Current from an inverse box model. J. Geophys. Res., 110, C12019, https://doi.org/10.1029/2005JC003032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Guerra, A., J. L. Pelegrí, E. Fraile-Nuez, V. Benítez-Barrios, M. Emelianov, M. D. Pérez-Hernández, and P. Vélez-Belchí, 2014: Meridional overturning transports at 7.5N and 24.5N in the Atlantic Ocean during 1992-93 and 2010-11. Prog. Oceanogr., 128, 98114, https://doi.org/10.1016/j.pocean.2014.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Guerra, A., E. Espino-Falcón, P. Vélez-Belchí, M. Dolores Pérez-Hernández, A. Martínez Marrero, and L. Cana, 2017: Recirculation of the Canary Current in fall 2014. J. Mar. Syst., 174, 2539, https://doi.org/10.1016/j.jmarsys.2017.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. E., 1998: Buoyancy effects in coastal and shelf seas. The Global Coastal Ocean: Processes and Methods, K. H. Brink and A. R. Robinson, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 10, John Wiley and Sons, 21–62.

  • Hill, E. A., B. M. Hickey, F. A. Shillington, P. T. Strub, K. H. Brink, E. D. Barton, and A. C. Thomas, 1998: Eastern ocean boundaries. The Global Coastal Ocean: Regional Studies and Syntheses, A. R. Robinson and K.H. Brink, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 11, John Wiley and Sons, 29–67.

  • Huthnance, J. M., 1984: Slope currents and “JEBAR.” J. Phys. Oceanogr., 14, 795810, https://doi.org/10.1175/1520-0485(1984)014<0795:SCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1995: Circulation, exchange and water masses at the ocean margin: The role of physical processes at the shelf edge. Prog. Oceanogr., 35, 353431, https://doi.org/10.1016/0079-6611(95)80003-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huyer, A., 1989: Poleward flow along eastern boundaries: What next? Poleward Flows along Eastern Ocean Boundaries, S. J. Neshyba et al., Eds., Springer, 40–44.

    • Crossref
    • Export Citation
  • Huyer, A., P. M. Kosro, S. J. Lentz, and R. C. Beardsley, 1989: Poleward flow in the California Current System. Poleward Flows along Eastern Ocean Boundaries, S. J. Neshyba et al., Eds., Springer, 142–159.

    • Crossref
    • Export Citation
  • Kanzow, T., and et al. , 2010: Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J. Climate, 23, 56785698, https://doi.org/10.1175/2010JCLI3389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kersalé, M., and et al. , 2019: Shallow and deep eastern boundary currents in the South Atlantic at 34.5°S: Mean structure and variability. J. Geophys. Res. Atmos., 124, 16341659, https://doi.org/10.1029/2018JC014554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laiz, I., J. L. Pelegrí, F. Machín, P. Sangrà, A. Hernández-Guerra, A. Marrero-Díaz, and A. Rodríguez-Santana, 2012: Eastern boundary drainage of the North Atlantic subtropical gyre. Ocean Dyn., 62, 12871310, https://doi.org/10.1007/s10236-012-0560-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K., H. Yoshinari, N. Maximenko, and P. Hacker, 2007: YoMaHa’05: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note, 16 pp., http://apdrc.soest.hawaii.edu/projects/yomaha/.

  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

  • Machín, F., and J. L. Pelegrí, 2009: Northward penetration of Antarctic intermediate water off Northwest Africa. J. Phys. Oceanogr., 39, 512535, https://doi.org/10.1175/2008JPO3825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Machín, F., J. L. Pelegrí, E. Fraile-Nuez, P. Vélez-Belchí, F. López-Laatzen, and A. Hernández-Guerra, 2010: Seasonal flow reversals of intermediate waters in the Canary Current System East of the Canary Islands. J. Phys. Oceanogr., 40, 19021909, https://doi.org/10.1175/2010JPO4320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., F. Colas, J. Molemaker, A. F. Shchepetkin, C. Troupin, J. C. McWilliams, and P. Sangrà, 2011: Seasonal variability of the Canary Current: A numerical study. J. Geophys. Res., 116, C06001, https://doi.org/10.1029/2010JC006665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and et al. , 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3536.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., D. A. Smeed, and W. E. Johns, 2015: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the coastal undercurrent. Philos. Trans. Roy. Soc. London, 302A, 385413, https://doi.org/10.1098/rsta.1981.0176.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., S. R. Shetye, and P. K. Kundu, 1986: Thermohaline forcing of eastern boundary currents: With application to the circulation off the west coast of Australia. J. Mar. Res., 44, 7192, https://doi.org/10.1357/002224086788460184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meincke, J., G. Siedler, and W. Zenk, 1975: Some current observations near the continental slope off Portugal. Meteor-Forschungsergeb. Reihe A, 16, 1522.

    • Search Google Scholar
    • Export Citation
  • Mittelstaedt, E., 1976: On the currents along the Northwest African coast South of 22° North. Dtsch. Hydrogr. Z., 29, 97117, https://doi.org/10.1007/BF02227058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittelstaedt, E., 1983: The upwelling area off Northwest Africa—A description of phenomena related to coastal upwelling. Prog. Oceanogr., 12, 307331, https://doi.org/10.1016/0079-6611(83)90012-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittelstaedt, E., 1989: The subsurface circulation along the Moroccan slope. Poleward Flows along Eastern Ocean Boundaries, S. J. Neshyba et al., Eds., Coastal and Estuarine Studies, Vol. 34, Amer. Geophys. Union, 96–109.

    • Crossref
    • Export Citation
  • Mittelstaedt, E., D. Pillsbury, and R. L. Smith, 1975: Flow patterns in the Northwest African upwelling area. Dtsch. Hydrogr. Z., 28, 145167, https://doi.org/10.1007/BF02232617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, G., 1989: Poleward motion in the Benguela area. Poleward Flows along Eastern Ocean Boundaries, S. J. Neshyba et al., Eds., Coastal and Estuarine Studies, Vol. 34, Amer. Geophys. Union, 110–130.

    • Crossref
    • Export Citation
  • Neshyba, S. J., C. N. K. Mooers, R. L. Smith, and R. T. Barber, 1989: Poleward flows along eastern ocean boundaries: An introduction and historical review. Poleward Flows along Eastern Ocean Boundaries, S. J. Neshyba et al., Eds., Coastal and Estuarine Studies, Vol. 34, Amer. Geophys. Union, 17–25.

    • Crossref
    • Export Citation
  • Ollitrault, M., and A. Colin de Verdière, 2013: The Ocean General Circulation near 1000-m depth. J. Phys. Oceanogr., 44, 384409, https://doi.org/10.1175/JPO-D-13-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., 2020: M_Map: A mapping package for MATLAB, version 1.4m. www.eoas.ubc.ca/~rich/map.html.

  • Pelegrí, J. L., J. Arístegui, A. Hernández-Guerra, S. Hernández-León, A. Marrero-Díaz, M. F. Montero, and P. Sangrà, 2005: Coupling between the open ocean and the coastal upwelling region off northwest Africa: Water recirculation and offshore pumping of organic matter. J. Mar. Syst., 54, 337, https://doi.org/10.1016/j.jmarsys.2004.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peliz, Á., J. Dubert, D. Haidvogel, and B. Le Cann, 2003: Generation and unstable evolution of a density-driven eastern poleward current: The Iberian Poleward Current. J. Geophys. Res., 108, 3268, https://doi.org/10.1029/2002JC001443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peliz, Á., J. Dubert, A. M. P. Santos, P. B. Oliveira, and B. Le Cann, 2005: Winter upper ocean circulation in the Western Iberian Basin—Fronts, eddies and poleward flows: An overview. Deep-Sea Res. I, 52, 621646, https://doi.org/10.1016/j.dsr.2004.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peña-Izquierdo, J., J. L. Pelegrí, M. V. Pastor, P. Castellanos, M. Emelianov, M. Gasser, J. Salvador, and E. Vázquez-Domínguez, 2012: The continental slope current system between Cape Verde and the Canary Islands. Sci. Mar., 76, 6578, https://doi.org/10.3989/scimar.03607.18C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Hernández, M. D., A. Hernández-Guerra, E. Fraile-Nuez, I. Comas-Rodríguez, V. M. Benítez-Barrios, J. F. Domínguez-Yanes, P. Vélez-Belchí, and D. De Armas, 2013: The source of the Canary current in fall 2009. J. Geophys. Res. Oceans, 118, 28742891, https://doi.org/10.1002/jgrc.20227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Hernández, M. D., G. D. McCarthy, P. Vélez-Belchí, D. A. Smeed, E. Fraile-Nuez, and A. Hernández-Guerra, 2015: The Canary Basin contribution to the seasonal cycle of the Atlantic Meridional Overturning Circulation at 26°N. J. Geophys. Res. Oceans, 120, 72377252, https://doi.org/10.1002/2015JC010969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prieto, E., C. González-Pola, A. Lavín, R. F. Sánchez, and M. Ruiz-Villarreal, 2013: Seasonality of intermediate waters hydrography west of the Iberian Peninsula from an 8 year semiannual time series of an oceanographic section. Ocean Sci., 9, 411429, https://doi.org/10.5194/os-9-411-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, https://doi.org/10.1175/2008JPO3881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sangrà, P., C. Troupin, B. Barreiro-González, E. Desmond Barton, A. Orbi, and J. Arístegui, 2015: The Cape Ghir filament system in August 2009 (NW Africa). J. Geophys. Res. Oceans, 120, 45164533, https://doi.org/10.1002/2014JC010514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shillington, F. A., C. J. C. Reason, C. M. Duncombe Rae, P. Florenchie, and P. Penven, 2006: Large scale physical variability of the Benguela Current Large Marine Ecosystem (BCLME). Benguela: Predicting a Large Marine Ecosystem, V. Shannon et al. Eds., Large Marine Ecosystems, Vol. 14, Elsevier, 49–70, https://doi.org/10.1016/S1570-0461(06)80009-1.

    • Crossref
    • Export Citation
  • Teles-Machado, A., Á. Peliz, J. C. McWilliams, X. Couvelard, and I. Ambar, 2016: Circulation on the Northwestern Iberian Margin: Vertical structure and seasonality of the alongshore flows. Prog. Oceanogr., 140, 134153, https://doi.org/10.1016/j.pocean.2015.05.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and M. V. Krassovski, 2010: Poleward reach of the California Undercurrent extension. J. Geophys. Res., 115, C09027, https://doi.org/10.1029/2010JC006280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thyng, K. M., C. A. Greene, R. D. Hetland, H. M. Zimmerle, and S. F. DiMarco, 2016: True colors of oceanography: Guidelines for effective and accurate colormap selection. Oceanography, 29, 913, https://doi.org/10.5670/oceanog.2016.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, R. E. Davis, and B. D. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, https://doi.org/10.1029/2010JC006536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vélez-Belchí, P., M. D. Pérez-Hernández, M. Casanova-Masjoan, L. Cana, and A. Hernández-Guerra, 2017: On the seasonal variability of the Canary Current and the Atlantic Meridional Overturning Circulation. J. Geophys. Res. Oceans, 122, 45184538, https://doi.org/10.1002/2017JC012774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D.-P., 1982: Effects of continental slope on the mean shelf circulation. J. Phys. Oceanogr., 12, 15241526, https://doi.org/10.1175/1520-0485(1982)012<1524:EOCSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zenk, W., and L. Armi, 1990: The complex spreading pattern of Mediterranean Water off the Portuguese continental slope. Deep-Sea Res., 37A, 18051823, https://doi.org/10.1016/0198-0149(90)90079-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 208 208 208
Full Text Views 9 9 9
PDF Downloads 12 12 12

The Canary Intermediate Poleward Undercurrent: Not Another Poleward Undercurrent in an Eastern Boundary Upwelling System

View More View Less
  • 1 a Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Santa Cruz de Tenerife, Canary Islands, Spain
  • | 2 b Unidad Océano y Clima, Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Canary Islands, Spain
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Poleward undercurrents are well-known features in eastern boundary upwelling systems. In the California Current upwelling system, the California poleward undercurrent has been widely studied, and it has been demonstrated that it transports nutrients from the equatorial waters to the northern limit of the subtropical gyre. However, in the Canary Current upwelling system, the Canary intermediate poleward undercurrent (CiPU) has not been properly characterized, despite recent studies arguing that the dynamics of the eastern Atlantic Ocean play an important role in the Atlantic meridional overturning circulation, specifically on its seasonal cycle. Here, we use trajectories of Argo floats and model simulations to characterize the CiPU, including its seasonal variability and its driving mechanism. The Argo observations show that the CiPU flows from 26°N, near Cape Bojador, to approximately 45°N, near Cape Finisterre and flows deeper than any poleward undercurrent in other eastern boundaries, with a core at a mean depth of around 1000 dbar. Model simulations manifest that the CiPU is driven by the meridional alongshore pressure gradient due to general ocean circulation and, contrary to what is observed in the other eastern boundaries, is still present at 1000 dbar as a result of the pressure gradient between the Antarctic Intermediate Waters in the south and Mediterranean Outflow waters in the north. The high seasonal variability of the CiPU, with its maximum strength in autumn and minimum in spring, is due to the poleward extension of AAIW, forced by Ekman pumping in the tropics.

Casanova-Masjoan: Deceased.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: P. Vélez-Belchí, pedro.velez@ieo.es

Abstract

Poleward undercurrents are well-known features in eastern boundary upwelling systems. In the California Current upwelling system, the California poleward undercurrent has been widely studied, and it has been demonstrated that it transports nutrients from the equatorial waters to the northern limit of the subtropical gyre. However, in the Canary Current upwelling system, the Canary intermediate poleward undercurrent (CiPU) has not been properly characterized, despite recent studies arguing that the dynamics of the eastern Atlantic Ocean play an important role in the Atlantic meridional overturning circulation, specifically on its seasonal cycle. Here, we use trajectories of Argo floats and model simulations to characterize the CiPU, including its seasonal variability and its driving mechanism. The Argo observations show that the CiPU flows from 26°N, near Cape Bojador, to approximately 45°N, near Cape Finisterre and flows deeper than any poleward undercurrent in other eastern boundaries, with a core at a mean depth of around 1000 dbar. Model simulations manifest that the CiPU is driven by the meridional alongshore pressure gradient due to general ocean circulation and, contrary to what is observed in the other eastern boundaries, is still present at 1000 dbar as a result of the pressure gradient between the Antarctic Intermediate Waters in the south and Mediterranean Outflow waters in the north. The high seasonal variability of the CiPU, with its maximum strength in autumn and minimum in spring, is due to the poleward extension of AAIW, forced by Ekman pumping in the tropics.

Casanova-Masjoan: Deceased.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: P. Vélez-Belchí, pedro.velez@ieo.es
Save