• Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berntsen, J., and L. Y. Oey, 2010: Estimation of the internal pressure gradient in σ-coordinate ocean models: Comparison of second-, fourth-, and sixth-order schemes. Ocean Dyn., 60, 317330, https://doi.org/10.1007/s10236-009-0245-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Z., and J. Gan, 2019: Coupled external-internal dynamics of layered circulation in the South China Sea: A modeling study. J. Geophys. Res. Oceans, 124, 50395053, https://doi.org/10.1029/2019JC014962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Z., J. Gan, Z. Liu, C. R. Hui, and J. Li, 2020: Progress on the formation dynamics of the layered circulation in the South China Sea. Prog. Oceanogr., 181, 102246, https://doi.org/10.1016/j.pocean.2019.102246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., B. Qiu, X. Cheng, Y. Qi, and Y. Du, 2015: Intra-seasonal variability of Pacific-origin sea level anomalies around the Philippine Archipelago. J. Oceanogr., 71, 239249, https://doi.org/10.1007/s10872-015-0281-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., N. L. Edmons, and C. Fan, 1999: Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. J. Phys. Oceanogr., 29, 29712989, https://doi.org/10.1175/1520-0485(1999)029<2971:DMFTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Academic Press, 308 pp.

  • Du, Y., and T. Qu, 2010: Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation. Dyn. Atmos. Oceans, 50, 233256, https://doi.org/10.1016/j.dynatmoce.2010.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, G., and et al. , 2010: Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. J. Geophys. Res., 115, C12020, https://doi.org/10.1029/2010JC006225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, J., H. Li, E. N. Curchitser, and D. B. Haidvogel, 2006: Modeling South China Sea circulation: Response to seasonal forcing regimes. J. Geophys. Res., 111, C06034, https://doi.org/10.1029/2005JC003298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, J., Z. Liu, and C. R. Hui, 2016: A three-layer alternating spinning circulation in the South China Sea. J. Phys. Oceanogr., 46, 23092315, https://doi.org/10.1175/JPO-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and C. L. Villanoy, 2011: The oceanography of the Philippine Archipelago: Introduction to the special issue. Oceanography, 24, 13, https://doi.org/10.5670/oceanog.2011.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., J. Sprintall, and A. Ffield, 2011: Regional oceanography of the Philippine Archipelago. Oceanography, 24, 1427, https://doi.org/10.5670/oceanog.2011.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. A. Huber, E. J. Metzger, R. D. Susanto, H. E. Hurlburt, and T. R. Adi, 2012: South China Sea throughflow impact on the Indonesian throughflow. Geophys. Res. Lett., 39, L11602, https://doi.org/10.1029/2012GL052021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, J., H. Kawamura, H. Hong, and Y. Qi, 2000: A review on the currents in the South China Sea: Seasonal circulation, South China Sea warm current and Kuroshio intrusion. J. Oceanogr., 56, 607624, https://doi.org/10.1023/A:1011117531252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., and et al. , 2019: Interannual variability of the Sulawesi Sea circulation forced by Indo-Pacific planetary waves. J. Geophys. Res. Oceans, 124, 16161633, https://doi.org/10.1029/2018JC014356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., E. J. Metzger, J. Sprintall, S. N. Riedlinger, R. A. Arnone, T. Shinoda, and X. Xu, 2011: Circulation in the Philippine archipelago simulated by 1/12° and 1/25° global HYCOM and EAS NCOM. Oceanography, 24, 2847, https://doi.org/10.5670/oceanog.2011.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, J., N. Zhang, and Y. Wang, 2013: On the dynamics of the South China Sea deep circulation. J. Geophys. Res. Oceans, 118, 12061210, https://doi.org/10.1002/jgrc.20104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, J., Y. Wang, F. Cui, and N. Zhang, 2015: Seasonal variation in the South China Sea deep circulation. J. Geophys. Res. Oceans, 120, 16821690, https://doi.org/10.1002/2014JC010413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., J. Wei, D. Wang, A. L. Gordon, S. Yang, P. Malanotte-Rizzoli, and G. Jiang, 2019: Exploring the importance of the Mindoro-Sibutu Pathway to the upper-layer circulation of the South China Sea and the Indonesian Throughflow. J. Geophys. Res. Oceans, 124, 50545066, https://doi.org/10.1029/2018JC014910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., H. Yang, and Z. Liu, 2001: Seasonal features of the Sverdrup circulation in the South China Sea. Prog. Nat. Sci., 11, 202206.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., M. Feng, and D. Wang, 2011: ENSO-induced interannual variability in the southeastern South China Sea. J. Oceanogr., 67, 127133, https://doi.org/10.1007/s10872-011-0002-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., R. Huang, and D. Wang, 2012: Implication of the South China Sea throughflow for the interannual variability of the regional upper-ocean heat content. Adv. Atmos. Sci., 29, 5462, https://doi.org/10.1007/s00376-011-0068-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mears, C. A., and et al. , 2019: A near real time version of the Cross Calibrated Multiplatform (CCMP) ocean surface wind velocity data set. J. Geophys. Res. Oceans, 124, 69977010, https://doi.org/10.1029/2019JC015367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and H. E. Hurlburt, 1996: Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res., 101, 12 33112 352, https://doi.org/10.1029/95JC03861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, F. Chai, L. Shi, M. Shi, and P. Guo, 2011: Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dyn., 61, 12911304, https://doi.org/10.1007/s10236-011-0426-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, F. Chai, D. Wang, F. Yu, M. Shi, P. Guo, and P. Xiu, 2013: Weakening of the Kuroshio intrusion into the South China Sea over the past two decades. J. Climate, 26, 80978110, https://doi.org/10.1175/JCLI-D-12-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, and F. Yu, 2015: Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr., 137, 314333, https://doi.org/10.1016/j.pocean.2014.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., and P. Chen, 1992a: A nested-grid ocean model: With application to the simulation of meanders and eddies in the Norwegian Coastal Current. J. Geophys. Res., 97, 20 06320 086, https://doi.org/10.1029/92JC01991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., and C. Ping, 1992b: A model simulation of circulation in the northeast Atlantic shelves and seas. J. Geophys. Res., 97, 20 08720 115, https://doi.org/10.1029/92JC01990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L., Y. L. Chang, Y. C. Lin, M. C. Chang, F. Xu, and H. F. Lu, 2013: ATOP -The advanced Taiwan ocean prediction system based on the mpiPOM. Part 1: Model descriptions, analyses and results. Terr. Atmos. Ocean. Sci., 24, 137158, https://doi.org/10.3319/TAO.2012.09.12.01(Oc).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., Y. L. Chang, Y. C. Lin, M. C. Chang, S. Varlamov, and Y. Miyazawa, 2014: Cross flows in the Taiwan strait in winter. J. Phys. Oceanogr., 44, 801817, https://doi.org/10.1175/JPO-D-13-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., 2000: Upper-layer circulation in the South China Sea. J. Phys. Oceanogr., 30, 14501460, https://doi.org/10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., and Y. T. Song, 2009: Mindoro Strait and Sibutu Passage transports estimated from satellite data. Geophys. Res. Lett., 36, L09601, https://doi.org/10.1029/2009GL037314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Y. Kim, M. Yaremchuk, T. Tuzuka, A. Ishida, and T. Yamagata, 2004: Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J. Climate, 17, 36443657, https://doi.org/10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Du, G. Meyers, A. Ishida, and D. Wang, 2005: Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys. Res. Lett., 32, L24609, https://doi.org/10.1029/2005GL024698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Du, and H. Sasaki, 2006: South China Sea throughflow: A heat and freshwater conveyor. Geophys. Res. Lett., 33, L23617, https://doi.org/10.1029/2006GL028350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. T. Song, and T. Yamagata, 2009: An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate. Dyn. Atmos. Oceans, 47, 314, https://doi.org/10.1016/j.dynatmoce.2008.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, Q., and H. Xue, 2018: Layered model and insights into the vertical coupling of the South China Sea circulation in the upper and middle layers. Ocean Modell., 129, 7592, https://doi.org/10.1016/j.ocemod.2018.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, Q., and H. Xue, 2019: Influence of abyssal mixing on the multi-layer circulation in the South China Sea. J. Phys. Oceanogr., 49, 30453060, https://doi.org/10.1175/JPO-D-19-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, Q., H. Xue, H. Qin, X. Zeng, and S. Peng, 2016: Features and variability of the South China Sea western boundary current from 1992 to 2011. Ocean Dyn., 66, 795810, https://doi.org/10.1007/s10236-016-0951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Y., H. Xue, D. Wang, F. Chai, Q. Xie, J. Yao, and J. Xiao, 2014: Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. J. Geophys. Res. Oceans, 119, 30123028, https://doi.org/10.1002/2013JC009583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., A. L. Gordon, P. Flament, and C. L. Villanoy, 2012: Observations of exchange between the South China Sea and the Sulu Sea. J. Geophys. Res., 117, C05036, https://doi.org/10.1029/2011JC007610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., 2004: Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont. Shelf Res., 24, 17451760, https://doi.org/10.1016/j.csr.2004.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susanto, R. D., Z. Wei, R. T. Adi, B. Fan, S. Li, and G. Fang, 2013: Observations of the Karimata Strait throughflow from December 2007 to November 2008. Acta Oceanol. Sin., 32, 16, https://doi.org/10.1007/s13131-013-0307-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J. W., and T. D. Qu, 2012: Advances in research on the deep South China Sea circulation. Chin. Sci. Bull., 57, 31153120, https://doi.org/10.1007/s11434-012-5269-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J. W., Q. Yang, X. Liang, L. Xie, D. Hu, F. Wang, and T. D. Qu, 2006: Observation of Luzon Strait transport. Geophys. Res. Lett., 33, L19607, https://doi.org/10.1029/2006GL026272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Qu, and T. Yamagata, 2007: Dramatic impact of the South China Sea on the Indonesian throughflow. Geophys. Res. Lett., 34, L12612, https://doi.org/10.1029/2007GL030420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Qu, Y. Masumoto, and T. Yamagata, 2009: Impacts of the South China Sea Throughflow on seasonal and interannual variations of the Indonesian Throughflow. Dyn. Atmos. Oceans, 47, 7385, https://doi.org/10.1016/j.dynatmoce.2008.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsui, I. F., and C. R. Wu, 2012: Variability analysis of Kuroshio intrusion through Luzon Strait using growing hierarchical self-organizing map. Ocean Dyn., 62, 11871194, https://doi.org/10.1007/s10236-012-0558-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., Q. Liu, R. X. Huang, Y. Du, and T. Qu, 2006: Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys. Res. Lett., 33, L14605, https://doi.org/10.1029/2006GL026316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and et al. , 2019: Advances in research of the mid-deep South China Sea circulation. Sci. China Earth Sci., 62, 19922004, https://doi.org/10.1007/s11430-019-9546-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Chen, and J. Su, 2006: Generation and life cycle of the dipole in the South China Sea summer circulation. J. Geophys. Res., 111, C06002, https://doi.org/10.1029/2005JC003314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S. P. Xie, T. Qu, and R. X. Huang, 2011: Deep South China Sea circulation. Geophys. Res. Lett., 38, L05601, https://doi.org/10.1029/2010GL046626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., R. X. Huang, J. Su, and D. Chen, 2012: The effects of thermohaline circulation on wind-driven circulation in the South China Sea. J. Phys. Oceanogr., 42, 22832296, https://doi.org/10.1175/JPO-D-11-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and D. Yuan, 2012: Nonlinear dynamics of two western boundary currents colliding at a gap. J. Phys. Oceanogr., 42, 20302040, https://doi.org/10.1175/JPO-D-12-05.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and D. Yuan, 2014: Multiple equilibria and hysteresis of two unequal-transport western boundary currents colliding at a gap. J. Phys. Oceanogr., 44, 18731885, https://doi.org/10.1175/JPO-D-13-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., M. T. Li, P. Malanotte-Rizzoli, A. L. Gordon, and D. X. Wang, 2016: Opposite variability of Indonesian Throughflow and South China Sea Throughflow in the Sulawesi Sea. J. Phys. Oceanogr., 46, 31653180, https://doi.org/10.1175/JPO-D-16-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. R., 2013: Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific. Prog. Oceanogr., 110, 4958, https://doi.org/10.1016/j.pocean.2012.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1961: Physical Oceanography of the Southeast Asian waters. Scripps Institution of Oceanography NAGA Rep., Vol. 2, 195 pp.

  • Xu, F.-H., and L.-Y. Oey, 2014: State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn., 64, 905923, https://doi.org/10.1007/s10236-014-0720-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, H., F. Chai, N. Pettigrew, D. Xu, M. Shi, and J. Xu, 2004: Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res., 109, C02017, https://doi.org/10.1029/2002JC001724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., and J. F. Price, 2000: Water-mass formation and potential vorticity balance in an abyssal ocean circulation. J. Mar. Res., 58, 789808, https://doi.org/10.1357/002224000321358918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, K., and T. Qu, 2013: Imprint of the pacific decadal oscillation on the South China Sea throughflow variability. J. Climate, 26, 97979805, https://doi.org/10.1175/JCLI-D-12-00785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., 2002: A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanol. Sin., 2, 3651.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., G. Liao, and C. Yang, 2008: The Kuroshio near the Luzon Strait and circulation in the northern South China Sea during August and September 1994. J. Oceanogr., 64, 777788, https://doi.org/10.1007/s10872-008-0065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z. W., C. R. Ho, and N. J. Kuo, 2007: Mechanism of weakening of west Luzon eddy during La Niña years. Geophys. Res. Lett., 34, L11604, https://doi.org/10.1029/2007GL030058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Sun, Y. Wang, Z. Wei, D. Yang, and T. Qu, 2017: Effect of potential vorticity flux on the circulation in the South China Sea. J. Geophys. Res. Oceans, 122, 64546469, https://doi.org/10.1002/2016JC012375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Sun, Y. Wang, S. Li, T. Xu, Z. Wei, and T. Qu, 2019: Overview of the multi-layer circulation in the South China Sea. Prog. Oceanogr., 175, 171182, https://doi.org/10.1016/j.pocean.2019.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhuang, W., B. Qiu, and Y. Du, 2013: Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine archipelago. J. Geophys. Res. Oceans, 118, 67596773, https://doi.org/10.1002/2013JC009376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zu, T., H. Xue, D. Wang, B. Geng, L. Zeng, Q. Liu, J. Chen, and Y. He, 2019: Interannual variation of the South China Sea circulation during winter: Intensified in the southern basin. Climate Dyn., 52, 19171933, https://doi.org/10.1007/s00382-018-4230-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zu, T., D. Wang, Q. Wang, M. Li, J. Wei, B. Geng, Y. He, and J. Chen, 2020: A revisit of the interannual variation of the South China Sea upper layer circulation in summer: Correlation between the eastward jet and northward branch. Climate Dyn., 54, 457471, https://doi.org/10.1007/s00382-019-05007-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 151 151 74
Full Text Views 48 48 31
PDF Downloads 60 60 36

The Role of the Mindoro–Sibutu Pathway on the South China Sea Multilayer Circulation

View More View Less
  • 1 a School of Atmospheric Sciences, Sun Yat-sen University, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Zhuhai, China
  • | 2 b Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
  • | 3 c State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 4 d School of Marine Sciences, University of Maine, Orono, Maine
  • | 5 e Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The role of the Mindoro Strait–Sibutu Passage pathway in influencing the Luzon Strait inflow to the South China Sea (SCS) and the SCS multilayer circulation is investigated with a high-resolution (0.1° × 0.1°) regional ocean model. Significant changes are evident in the SCS upper-layer circulation (250–900 m) by closing the Mindoro–Sibutu pathway in sensitivity experiments, as Luzon Strait transport is reduced by 75%, from −4.4 to −1.2 Sv (1 Sv ≡ 106 m3 s−1). Because of the vertical coupling between the upper and middle layers, closing the Mindoro–Sibutu pathway also weakens clockwise circulation in the middle layer (900–2150 m), but there is no significant change in the deep layer (below 2150 m). The Mindoro–Sibutu pathway is an important branch of the SCS throughflow into the Indonesian Seas. It is also the gateway for oceanic waves propagating clockwise around the Philippines Archipelago from the western Pacific Ocean into the eastern SCS, projecting El Niño–Southern Oscillation sea level signals to the SCS, impacting its interannual variations and multilayer circulation. The results provide insights into the dynamics of how upstream and downstream passage throughflows are coupled to affect the general circulation in marginal seas.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijie Xue, huijiexue@scsio.ac.cn

Abstract

The role of the Mindoro Strait–Sibutu Passage pathway in influencing the Luzon Strait inflow to the South China Sea (SCS) and the SCS multilayer circulation is investigated with a high-resolution (0.1° × 0.1°) regional ocean model. Significant changes are evident in the SCS upper-layer circulation (250–900 m) by closing the Mindoro–Sibutu pathway in sensitivity experiments, as Luzon Strait transport is reduced by 75%, from −4.4 to −1.2 Sv (1 Sv ≡ 106 m3 s−1). Because of the vertical coupling between the upper and middle layers, closing the Mindoro–Sibutu pathway also weakens clockwise circulation in the middle layer (900–2150 m), but there is no significant change in the deep layer (below 2150 m). The Mindoro–Sibutu pathway is an important branch of the SCS throughflow into the Indonesian Seas. It is also the gateway for oceanic waves propagating clockwise around the Philippines Archipelago from the western Pacific Ocean into the eastern SCS, projecting El Niño–Southern Oscillation sea level signals to the SCS, impacting its interannual variations and multilayer circulation. The results provide insights into the dynamics of how upstream and downstream passage throughflows are coupled to affect the general circulation in marginal seas.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijie Xue, huijiexue@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.25 MB)
Save