The Cyclonic Mode of Arctic Ocean Circulation

View More View Less
  • 1 Polar Science Center, University of Washington
  • 2 Polar Science Center, formerly the Jet Propulsion Laboratory
  • 3 University of Utah, formerly the Polar Science Center
  • 4 Kennedy School of Harvard University, formerly the Polar Science Center
© Get Permissions
Restricted access

Abstract

Arctic Ocean surface circulation change should not be viewed as the strength of the anticyclonic Beaufort Gyre. While the Beaufort Gyre is a dominant feature of average Arctic Ocean surface circulation, empirical orthogonal function analysis of dynamic height (1950-1989) and satellite altimetry-derived dynamic ocean topography (2004-2019) show the primary pattern of variability in its cyclonic mode is dominated by a depression of the sea surface and cyclonic surface circulation on the Russian side of the Arctic Ocean. Changes in surface circulation after AO maxima in 1989 and 2007-08 and after an AO minimum in 2010, indicate the cyclonic mode is forced by the Arctic Oscillation (AO) with a lag of about one year. Associated with a one standard deviation increase in the average AO starting in the early 1990s, Arctic Ocean surface circulation underwent a cyclonic shift evidenced by increased spatial-average vorticity. Under increased AO, the cyclonic mode complex also includes increased export of sea ice and near-surface freshwater, a changed path of Eurasian runoff, a freshened Beaufort Sea, and weakened cold halocline layer that insulates sea ice from Atlantic water heat, an impact compounded by increased Atlantic Water inflow and cyclonic circulation at depth. The cyclonic mode’s connection with the AO is important because the AO is a major global scale climate index predicted to increase with global warming. Given the present bias in concentration of in situ measurements in the Beaufort Gyre and Transpolar Drift, a coordinated effort should be made to better observe the cyclonic mode.

Corresponding author: James Morison, email: jhm2@uw.edu

Abstract

Arctic Ocean surface circulation change should not be viewed as the strength of the anticyclonic Beaufort Gyre. While the Beaufort Gyre is a dominant feature of average Arctic Ocean surface circulation, empirical orthogonal function analysis of dynamic height (1950-1989) and satellite altimetry-derived dynamic ocean topography (2004-2019) show the primary pattern of variability in its cyclonic mode is dominated by a depression of the sea surface and cyclonic surface circulation on the Russian side of the Arctic Ocean. Changes in surface circulation after AO maxima in 1989 and 2007-08 and after an AO minimum in 2010, indicate the cyclonic mode is forced by the Arctic Oscillation (AO) with a lag of about one year. Associated with a one standard deviation increase in the average AO starting in the early 1990s, Arctic Ocean surface circulation underwent a cyclonic shift evidenced by increased spatial-average vorticity. Under increased AO, the cyclonic mode complex also includes increased export of sea ice and near-surface freshwater, a changed path of Eurasian runoff, a freshened Beaufort Sea, and weakened cold halocline layer that insulates sea ice from Atlantic water heat, an impact compounded by increased Atlantic Water inflow and cyclonic circulation at depth. The cyclonic mode’s connection with the AO is important because the AO is a major global scale climate index predicted to increase with global warming. Given the present bias in concentration of in situ measurements in the Beaufort Gyre and Transpolar Drift, a coordinated effort should be made to better observe the cyclonic mode.

Corresponding author: James Morison, email: jhm2@uw.edu
Save