• Aliabadi, A. A., R. M. Staebler, J. de Grandpre, A. Zadra, and P. A. Vaillancourt, 2016: Comparison of estimated atmospheric boundary layer mixing height in the Arctic and Southern Great Plains under statically stable conditions: Experimental and numerical aspects. Atmos.–Ocean, 54, 6074, https://doi.org/10.1080/07055900.2015.1119100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and et al. , 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodner, A. S., B. Fox-Kemper, L. P. Van Roekel, J. C. McWilliams, and P. P. Sullivan, 2019: A perturbation approach to understanding the effects of turbulence on frontogenesis. J. Fluid Mech., 883, A25, https://doi.org/10.1017/jfm.2019.804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. Choi, K. Joshi, H. Luo, and J. C. McWilliams, 2016: Submesoscale currents in the northern Gulf of Mexico: Deep phenomena and dispersion over the continental slope. Ocean Modell., 101, 4358, https://doi.org/10.1016/j.ocemod.2016.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracco, A., G. P. Liu, and D. X. Sun, 2019: Mesoscale-submesoscale interactions in the Gulf of Mexico: From oil dispersion to climate. Chaos Solitons Fractals, 119, 6372, https://doi.org/10.1016/j.chaos.2018.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., and et al. , 2019: The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer. J. Adv. Model. Earth Syst., 11, 40664094, https://doi.org/10.1029/2019MS001801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Baroclinic instability in the presence of convection. J. Phys. Oceanogr., 48, 4560, https://doi.org/10.1175/JPO-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Mokemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chor, T., J. C. McWilliams, and M. Chamecki, 2021: Modifications to the K-profile parameterization with nondiffusive fluxes for Langmuir turbulence. J. Phys. Oceanogr., 51, 15031521, https://doi.org/10.1175/JPO-D-20-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowe, M. N., and J. R. Taylor, 2018: The evolution of a front in turbulent thermal wind balance. Part 1. Theory. J. Fluid Mech., 850, 179211, https://doi.org/10.1017/jfm.2018.448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowe, M. N., and J. R. Taylor, 2019: Baroclinic instability with a simple model for vertical mixing. J. Phys. Oceanogr., 49, 32733300, https://doi.org/10.1175/JPO-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Addezio, J. M., G. A. Jacobs, M. Yaremchuk, and I. Souopgui, 2020: Submesoscale eddy vertical covariances and dynamical constraints from high-resolution numerical simulations. J. Phys. Oceanogr., 50, 10871115, https://doi.org/10.1175/JPO-D-19-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Cost., 6, 101115, https://doi.org/10.1146/annurev-marine-010213-135138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and et al. , 2018: Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 11621167, https://doi.org/10.1073/pnas.1718453115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020: The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr., 50, 26492667, https://doi.org/10.1175/JPO-D-20-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y. L., E. Jarosz, Z. T. Yu, W. E. Rogers, T. G. Jensen, and J. H. Liang, 2018: Langmuir turbulence in horizontal salinity gradient. Ocean Modell., 129, 93103, https://doi.org/10.1016/j.ocemod.2018.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., J. Wells, A. E. Tejada-Martínez, and C. E. Grosch, 2004: Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science, 306, 19251928, https://doi.org/10.1126/science.1100849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1979: Mixing in the ocean interior. Dyn. Atmos. Oceans, 3, 239265, https://doi.org/10.1016/0377-0265(79)90011-3.

  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir–submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, https://doi.org/10.1175/JPO-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2013: A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43, 673697, https://doi.org/10.1175/JPO-D-12-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J., and G. Hakim, 2013: Quasi-geostrophic analysis. An Introduction to Dynamic Meteorology, Academic Press, 171–210.

    • Crossref
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, https://doi.org/10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., 2020: Horizontal transport of buoyant material by turbulent jets in the upper ocean. J. Phys. Oceanogr., 50, 827843, https://doi.org/10.1175/JPO-D-19-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., and K. Brunner, 2015: Passive buoyant tracers in the ocean surface boundary layer: 1. Influence of equilibrium wind-waves on vertical distributions. J. Geophys. Res. Oceans, 120, 38373858, https://doi.org/10.1002/2014JC010487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, https://doi.org/10.1146/annurev.fl.15.010183.002135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., and C. Garrett, 1997: Mixed layer deepening due to Langmuir circulation. J. Phys. Oceanogr., 27, 121132, https://doi.org/10.1175/1520-0485(1997)027<0121:MLDDTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. D. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I., 52, 259278, https://doi.org/10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and et al. , 2019: Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst., 11, 35453592, https://doi.org/10.1029/2019MS001810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., J. C. McWilliams, P. P. Sullivan, and B. Baschek, 2012: Large-eddy simulation of the bubbly ocean: New insights on subsurface bubble distribution and bubble-mediated gas transfer. J. Geophys. Res., 117, C04002, https://doi.org/10.1029/2011JC007766.

    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., C. Deutcsh, J. C. McWilliams, B. Baschek, P. P. Sullivan, and D. Chiba, 2013: Parameterizing bubble-mediated air-sea gas exchange and its effect on ocean ventilation. Global Biogeochem. Cycles, 27, 894905, https://doi.org/10.1002/gbc.20080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., S. R. Emerson, E. A. D’Asaro, C. L. McNeil, R. R. Harcourt, P. P. Sullivan, B. Yang, and M. F. Cronin, 2017: On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm. J. Geophys. Res. Oceans, 122, 26712685, https://doi.org/10.1002/2016JC012408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., X. Wan, K. A. Rose, P. P. Sullivan, and J. C. McWilliams, 2018: Horizontal dispersion of buoyant materials in the ocean surface boundary layer. J. Phys. Oceanogr., 48, 21032125, https://doi.org/10.1175/JPO-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., E. A. D’Asaro, C. L. McNeil, Y. Fan, R. R. Harcourt, S. R. Emerson, B. Yang, and P. P. Sullivan, 2020: Suppression of CO2 outgassing by gas bubbles under a hurricane. Geophys. Res. Lett., 47, e2020GL090249, https://doi.org/10.1029/2020GL090249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J.-H. Liang, J. C. McWilliams, P. P. Sullivan, Y. Fan, and Q. Chen, 2018: Effect of planetary rotation on oceanic surface boundary layer turbulence. J. Phys. Oceanogr., 48, 20572080, https://doi.org/10.1175/JPO-D-17-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J.-H. Liang, K. Xu, Q. Chen, and C. E. Ozdemir, 2019: Modeling sediment flocculation in Langmuir turbulence. J. Geophys. Res. Oceans, 124, 78837907, https://doi.org/10.1029/2019JC015197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2016: The impact of submesoscale physics on primary productivity of Plankton. Annu. Rev. Mar. Sci.., 8, 161184, https://doi.org/10.1146/annurev-marine-010814-015912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., A. Tandon, and R. Ferrari, 2010: Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res., 115, C03017, https://doi.org/10.1029/2008JC005203.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., E. D’Asaro, C. Lee, and M. J. Perry, 2012: Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science, 337, 5458, https://doi.org/10.1126/science.1218740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2021: Oceanic frontogenesis. Annu. Rev. Mar. Sci., 13, 227253, https://doi.org/10.1146/annurev-marine-032320-120725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., F. Colas, and M. J. Molemaker, 2009: Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett., 36, L18602, https://doi.org/10.1029/2009GL039402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, https://doi.org/10.1175/JPO-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, https://doi.org/10.1175/JPO-D-13-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, https://doi.org/10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735, https://doi.org/10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omand, M. M., E. A. D’Asaro, C. M. Lee, M. J. Perry, N. Briggs, I. Cetinić, and A. Mahadevan, 2015: Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science, 348, 222225, https://doi.org/10.1126/science.1260062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B. C., A. L. Grant, J. A. Polton, and S. E. Belcher, 2015: Langmuir turbulence and surface heating in the ocean surface boundary layer. J. Phys. Oceanogr., 45, 28972911, https://doi.org/10.1175/JPO-D-15-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp.

    • Crossref
    • Export Citation
  • Poje, A. C., and et al. , 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., D. M. Lewis, and S. E. Belcher, 2005: The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35, 444457, https://doi.org/10.1175/JPO2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. A. Sundermeyer, 1999: Stratified Ekman layers. J. Geophys. Res. Oceans, 104, 20 46720 494, https://doi.org/10.1029/1999JC900164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. R. Schudlich, 1987: Wind-driven ocean currents and Ekman transport. Science, 238, 15341538, https://doi.org/10.1126/science.238.4833.1534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, and Z. Wang, 2013: Assessment of Southern Ocean mixed-layer depths in CMIP5 models: Historical bias and forcing response. J. Geophys. Res. Oceans, 118, 18451862, https://doi.org/10.1002/jgrc.20157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and R. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, https://doi.org/10.1175/JPO-D-10-05016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., T. Paluszkiewicz, D. W. Denbo, and W. D. Smyth, 1996: Nonlinear vertical mixing processes in the ocean: Modeling and parameterization. Physica D, 98, 574593, https://doi.org/10.1016/0167-2789(96)00113-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., W. D. Smyth, J. N. Moum, and H. Wijesekera, 1999: Upper-ocean turbulence during a westerly wind burst: A comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr., 29, 528, https://doi.org/10.1175/1520-0485(1999)029<0005:UOTDAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., J. Duncombe, and R. M. Samelson, 2017: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part II: Forced simulations. J. Phys. Oceanogr., 47, 24292454, https://doi.org/10.1175/JPO-D-16-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1992: Observed growth of Langmuir circulation. J. Geophys. Res., 97, 56515664, https://doi.org/10.1029/91JC03118.

  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

    • Crossref
    • Export Citation
  • Su, Z., J. B. Wang, P. Klein, A. F. Thompson, and D. Menemenlis, 2018: Ocean submesoscales as a key component of the global heat budget. Nat. Commun., 9, 775, https://doi.org/10.1038/s41467-018-02983-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech., 837, 341380, https://doi.org/10.1017/jfm.2017.833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2019: Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech., 879, 512553, https://doi.org/10.1017/jfm.2019.655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, https://doi.org/10.1146/annurev-fluid-121108-145541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, https://doi.org/10.1017/S002211200700897X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 19591980, https://doi.org/10.1175/JPO-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., and et al. , 2014: Observations and numerical simulations of large-eddy circulation in the ocean surface mixed layer. Geophys. Res. Lett., 41, 75847590, https://doi.org/10.1002/2014GL061637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2011: Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms. Limnol. Oceanogr., 56, 22932307, https://doi.org/10.4319/lo.2011.56.6.2293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2016: Turbulent mixing, restratification, and phytoplankton growth at a submesoscale eddy. Geophys. Res. Lett., 43, 57845792, https://doi.org/10.1002/2016GL069106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2018: Accumulation and subduction of buoyant material at submesoscale fronts. J. Phys. Oceanogr., 48, 12331241, https://doi.org/10.1175/JPO-D-17-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., K. M. Smith, and C. A. Vreugdenhil, 2020: The Influence of submesoscales and vertical mixing on the export of sinking tracers in large-eddy simulations. J. Phys. Oceanogr., 50, 13191339, https://doi.org/10.1175/JPO-D-19-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tejada-Martínez, A. E., and C. E. Grosch, 2007: Langmuir turbulence in shallow water. Part 2. Large-eddy simulation. J. Fluid Mech., 576, 63108, https://doi.org/10.1017/S0022112006004587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and J. R. Taylor, 2010: Reduction of the usable wind-work on the general circulation by forced symmetric instability. Geophys. Res. Lett., 37, L18606, https://doi.org/10.1029/2010GL044680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1975: The excitation, dissipation, and interaction of internal waves in the deep ocean. J. Geophys. Res., 80, 328338, https://doi.org/10.1029/JC080i003p00328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2007: An Introduction to Ocean Turbulence. Cambridge University Press, 240 pp.

    • Crossref
    • Export Citation
  • Van Roekel, L. P., P. E. Hamlington, and B. Fox-Kemper, 2012: Multiscale simulations of Langmuir cells and submesoscale eddies using XSEDE resources. Proc. First Conf. of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond, Chicago, IL, Association for Computing Machinery, 20, https://doi.org/10.1145/2335755.2335816.

    • Crossref
    • Export Citation
  • Verma, V., H. T. Pham, and S. Sarkar, 2019: The submesoscale, the finescale and their interaction at a mixed layer front. Ocean Modell., 140, 101400, https://doi.org/10.1016/j.ocemod.2019.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and et al. , 2020: Enhanced mixing across the gyre boundary at the Gulf Stream front. Proc. Natl. Acad. Sci. USA, 117, 17 60717 614, https://doi.org/10.1073/pnas.2005558117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and J. R. Taylor, 2017: Energetic submesoscales maintain strong mixed layer stratification during an autumn storm. J. Phys. Oceanogr., 47, 24192427, https://doi.org/10.1175/JPO-D-17-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, J. D., and V. Strass, 1986: The response of the upper ocean to solar heating II: The wind-driven current. Quart. J. Roy. Meteor. Soc., 112, 2942, https://doi.org/10.1002/qj.49711247103.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., and L. Chen, 1995: Baroclinic instability and thermohaline gradient alignment in the mixed layer. J. Phys. Oceanogr., 25, 31723185, https://doi.org/10.1175/1520-0485(1995)025<3172:BIATGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z., R. R. Harcourt, and E. A. D’Asaro, 2021: Evaluating Monin–Obukhov scaling in the unstable oceanic surface layer. J. Phys. Oceanogr., 51, 911930, https://doi.org/10.1175/JPO-D-20-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 327 327 85
Full Text Views 43 43 14
PDF Downloads 60 60 24

Wind- and Wave-Driven Ocean Surface Boundary Layer in a Frontal Zone: Roles of Submesoscale Eddies and Ekman–Stokes Transport

View More View Less
  • 1 a Louisiana State University, Baton Rouge, Louisiana
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman buoyancy flux (or the Ekman–Stokes buoyancy flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun-Hong Liang, jliang@lsu.edu

Abstract

Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman buoyancy flux (or the Ekman–Stokes buoyancy flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jun-Hong Liang, jliang@lsu.edu
Save